Skip to Content

ZWO ASI294MC Pro Review (Color Astrophotography Camera)

ZWO ASI294MC Pro Review
|Camera|10 Comments

The ZWO ASI294 MC Pro is a remarkably capable one-shot-color CMOS camera for deep sky astrophotography. Whether you use it for broadband true-color images on a moonless night or ultra-long-exposure images using your favorite narrowband filter – this camera can produce insanely beautiful images.

This is easily one of the best color cameras I have ever used for astrophotography, and my go-to choice for a night of deep sky imaging. Over the past 6 months, I have used this camera extensively through a number of telescopes in the backyard and beyond.

Here is a taste of what the ASI294MC Pro can do:

M20 - The Trifid Nebula

The Trifid Nebula using a Luminance Filter with the ASI294 MC Pro

This photo of the Trifid Nebula was captured using the ZWO ASI294MC Pro with an Astromania Luminance filter (IR Cut) in front of the sensor. The photo was captured under the dark skies of the Cherry Springs Star Party in 2018.

This incredible camera was loaned to me for review by Stephen Mallia of Ontario Telescope and Accessories. You can purchase the ASI294 MC Pro online from his website.

ASI294MC Pro Astrophotography Camera Review


I can safely say that I now know exactly what the ASI294MC Pro is capable of, and some recommended settings that you can use for a successful image. I’ve used this camera for both full-color images with light pollution filters, an IR cut filter and narrowband filters that separate certain wavelengths of light such as Ha and OIII.

This OSC (One-shot-color) camera performs exceptionally well in both situations. The idea of capturing narrowband images with a color camera is something that is generally advised against in the astrophotography community. This is because a color sensor will essentially record about one-quarter of the detail a mono camera would.

The cheat code, however, is to use a color camera like the ASI294 MC Pro with a duo-narrowband filter like the STC Astro Duo-Narrowband filter. This has the power to build gorgeous deep sky images like the Eagle Nebula example below in a single shot.

The Eagle Nebula

The Eagle Nebula in Ha + OIII (STC Astro Duo-Narrowband Filter)

The photo above was captured in a Bortle Class 8 light polluted area (my backyard) using the ASI294 MC Pro. It showcases both Ha and OIII gases of this Emission Nebula (Messier 16) for some astonishingly detailed results from the city.

This dedicated astronomy camera houses a high-sensitivity type 4/3 CMOS image sensor that supports 4K output at 120 frames per second. It’s a SONY 10.7 MP sensor that produces high-resolution 4144 x 2822 pixel images at its native resolution.

I generally bin my images 2×2, so that just means that my photos are half of that size, in greater resolution. (smaller pixel size). The Bayer pattern of this color sensor is RGGB, which you’ll need to remember when selecting the camera in your image control software, and before stacking.

This camera is well suited for color EAA astronomy (Electronically-Assisted Astronomy), as the ASI294MC Pro includes a 256MB DDR3 memory buffer to help improve data transfer reliability. This is a great feature to consider if you plan on diving into this type of visual astronomy.

You can benefit from the high sensitivity sensor to view more detail in a deep sky object in a “live” looping video feed. Because I am obsessed with collecting images, the only time I experience a glimpse of this feature is when I am framing my target!

Comparing Specs Between ASI Color Cameras:

CameraSensorSensor SizeResolutionPrice
ASI183MC ProSONY IMX1831"20 MPCheck Current Price
ASI294MC ProSONY IMX2944/3"10.7 MPCheck Current Price
ASI071MC ProSONY IMX071APS-C (1.8")16 MPCheck Current Price
ASI128MC ProSONY IMX128Full Frame (35mm)24 MPCheck Current Price

All of the Pro model ASI color cameras include the DDR3 Buffer technology which results in faster data transfer speeds and reduces amp glow. Each one of these cameras requires 55mm of back focus between the image sensor and your flattener/reducer.

Making the Upgrade from a DSLR to a CCD-style camera

When I began using color CMOS cameras like the ASI294 MC Pro, I could no longer use the camera control software I did with my DSLR’s (Backyard EOS). Instead, I use an application called APT (Astro Photography Tool), which allows me to control every aspect of the camera from the cooling temperature to gain.

Upgrading from a DSLR to a CCD type astronomy camera like this is a big transition. For me, the hardest part was getting used to controlling the camera entirely with external software.

The change in image file formats (from .RAW to .FIT was also a bit of a hurdle early on. Luckily, DeepSkyStacker is well suited to stack and de-Bayer this image format into a high resolution .TIF file that you can process in Photoshop.

ZWO ASI294MC Pro Review

The two-stage TEC (Thermo-electric cooling) is perhaps the biggest difference and advantage a dedicated astronomy camera has over a DSLR. As you may know, noise is a big issue to deal with when taking long exposures at a high ISO. I’ve battled with noise for many years (and continue to do so) when processing my astrophotography images taken with my Canon T3i and 5D Mk II DSLR’s.

A cooled CMOS camera like the ASI294 MC Pro can cool its sensor down to 35 degrees below ambient. This results in images that are virtually free of thermal noise. I should mention that it’s important to understand that this means 35 degrees below the current temperature, so if it’s a hot 30-degree night, the camera will max out at -5 degrees.

APO refractor telescope

The ASI294MC Pro Camera attached to my Explore Scientific ED102 Refractor Telescope

Connections and Software

The camera is connected to my computer via a USB 3.0 cable. For the cooling feature, it also requires an external 12V power supply that does not come included with the camera. If you’re anything like me, you have accumulated a number of 12V adapter cables over the years.

To keep things organized and convenient, I now connect the power port on the ASI294MC Pro to the outlets on my Pegasus Astro Pocket Power Box. This means that the camera and telescope don’t have another power cable running to an outlet. It all rides atop the iOptron CEM60 equatorial mount.

The camera is controlled using APT, which required the appropriate drivers from the ZWO ASI website. Installing the driver is painless, and then the “ASI camera” selection will appear from the drop-down menu the next time you connect the camera to APT.

The cooling function is set using the “Cooling Aid” within Astro Photography Tool. It can take a few minutes to get the camera sensor to the temperature you want it. It’s best to get a head start on this process so you’re not waiting around when it’s time to shoot.

A One-Shot-Color Camera – Impressive Specs

I love how sensitive the SONY IMX294CJK sensor is on this camera. The dynamic range of this camera sensor is listed at 13 stops. This is even more than the legendary AS1600 camera from ZWO. This characteristic is thanks to the built-in 14bit ADC (analog-to-digital converter) unit on the 294MC Pro.

ZWO ASI294MC Pro Camera Specs:

  • Sensor: 4/3″ SONY IMX294 CMOS
  • Diagonal: 23.2mm
  • Resolution: 10.7 Mega Pixels (4144 X 2822)
  • Pixel Size: 4.63µm
  • Bayer Pattern: RGGB
  • ADC:14bit
  • DDRIII Buffer: 256MB
  • Back Focus Distance: 6.5mm
  • Cooling: Regulated Two Stage TEC

If you’re wondering what the difference is between the MC-Cool and MC-Pro cameras from ASI are, it’s the DDR3 memory buffer. For non-tech-heads (like myself) this basically means that the camera can transfer data faster and more efficiently. It also reduces amp glow because this artifact is primarily caused by slow transfer speeds.

Here is what the amp glow looks like on a single image captured with the ASI294MC Pro. The amp glow is completely removed after stacking the images with dark frames in DeepSkyStacker.

amp glow

Recommended settings for the ASI294 MC Pro

I find that the best camera settings to use with this camera are to set the gain at “unity gain” and an exposure length of 3 to 5 minutes. This, of course, depends on the deep sky target you are shooting, and the filters being used with the camera.

For example, using a narrowband filter such as a 12nm Ha, I would choose an exposure length of at least 5 minutes. I even shot some images that were as long as 10 minutes with this camera. The photo below shows the Rosette Nebula using a stack of 20 x 10 minutes exposures using the ASI294MC Pro and an Astronomik 12nm Ha filter.

NGC 2244 in Ha

Because the sensor is so sensitive, I can often find my deep sky target in a 2-3 second exposure in live loop mode. This is usually with a strong narrowband filter in front, which is quite impressive. This makes framing the target much easier because you’re able to see the shape and orientation of the DSO (almost) in real time as you adjust the telescope.

Final Thoughts

If you compare the ASI294MC Pro vs. the ASI071MC Pro, you’ll find that the price is significantly more affordable for the 294. I’ve used both of these cameras (The ASI071 camera was the older non-pro “Cool” version), and the image results are remarkably comparable.

The biggest difference between the two cameras is, of course, the sensor itself. The sensor in the AS071 is a 16MP APS-C sized chip, while the ASI294 is a Four-Thirds 10.7 MP sensor. This changes the pixel scale of your images and thus the apparent size of the objects you’ll capture through your telescope.

For APO refractors in the 700-1000mm range, the pixel scale of the ASI294 MC Pro was the absolute perfect size for some of my favorite deep sky targets like the Eagle Nebula and Pelican Nebula.  I used a Starfield 0.8X reducer/flattener with this camera and the various refractor telescopes I used when imaging deep sky objects.

Deep sky astrophotography telescope

If you’re looking to upgrade your DSLR or current color astronomy camera to the realm of “cooled” CMOS sensors – my results with the ASI294 MC Pro should help you make a more informed decision. I highly recommend the ASI294 MC Pro camera if you are in the market for a color astrophotography camera with some serious power and versatility.

The ZWO ASI294MC Pro is available Online from Ontario Telescope and Accessories. I hope you enjoyed this review! If you’d like to stay up to date with all of the future posts on AstroBackyard, please sign up for my newsletter.

Dumbbell Nebula

View the rest of my deep sky astrophotography equipment.

Related Posts

Share This

Related Tags

This Post Has 10 Comments

  1. Jack Urie says:

    Excellent review Trevor. As much as I want to go mono, the 294 has been a contender for my money. Somehow, as a newbie, with all the clouds and my busy work life, I just don’t see how I can spend the time to grab separate LRGB or SHO images over multiple nights. Maybe someday when I run out of the easy stuff I can go mono. That and the fact that spending 2000 or more for all the filters, wheel, etc. Quick and easy will lower frustration getting started too. Very timely review –thanks.

  2. Ron Kramer says:

    Hi Trev…
    Hi Trevor,
    I almost bought a ASI094MC But at 4K in price… I was hesitant. (I had a ASI071) and wasn’t pleased. I exchanged that for a ASI1600MMC (which I like but post processing is time consuming. so I had hoped a OSC may please me.
    Still in red/orange polluted skies in the suburbs of Grand Rapids I fear spending 4K on a camera to find too much light pollution makes it unacceptable.
    I’d like to see the full sized images? (where can I find them?) astrobin or dsobrowser? You”re saying I can put a astrodon Ha filter (or other NB) and shoot mono with it as well? How is that done? Like when you debayer with NB filter it’s a mono color? or b/w? I suspect it’s the color of the NB filter? At least at 1000. it’s at a novelty price… I suspect I could get 1k of usage. I’d love to see the full files, a sub, a nb sub etc?

  3. Ron Kramer says:

    Love the HA image – but it’s small – clicking doesn’t open a larger size?
    Down sizing makes even poor images good. I’d love to see some large full size images?

  4. Nice review Trevor. The images you are getting are stunning. I was going back and forth with this camera or a monochrome. It was close but in the end I decided on the ZWO ASI1600MM mainly because I wanted to do Hubble palette images. So far I am liking my decision as doing each color channel (RGB) is not as hard as I though it was going to be. I use a 8-position EFW and finally have APT figured out pretty well. I do use PI now for stacking and combining RGB and NB images as it does it very well. You do have to do a set of flats for each filter you use so there is definitely more work involved but those are the trade offs. I may purchase a color CMOS with a smaller sensor when galaxy season comes around as they are better done in normal color anyway. – Cheers Kurt

    • Trevor says:

      Thanks for the update, Kurt. You can’t go wrong with that 1600MM. Some of the best amateur astrophotography images I’ve ever seen were using that camera. Glad to hear you are having success with APT and PI:) You have come a long way my friend!

  5. nznsms says:

    Jack Urie says:, thank you ever so for you post.Much thanks again.

  6. Hi!
    I am interested in this ASI 294. The main reason is to be able to combine in two teams in parallel to obtain Luminance images with the ASI1600MMC and the color with ASI294MC.

    In cloudynights forum some comments have appeared that discourage the use of this CMOS for long exposures.
    The reason is because artifacts appear or refrigeration is not good.

    I think that for a driver update it has been fixed but I have asked Sam to see how the issue is.
    I have high hopes with this camera.
    I am a nomad at night and I usually move 100km to plant the telescopes.
    Thank you very much!
    Carlos

Post a Reply

Your email address will not be published. Required fields are marked *