Skip to Content

How to Photograph the Milky Way

To photograph the Milky Way with a DSLR camera effectively, you need to take long-exposure images using a moderately high ISO setting, and the maximum aperture of your lens. This will reveal more of the structure and color of the Milky Way galaxy in a single image.

These are not hard and fast rules, of course. Like all experiences in astrophotography, subtle changes to your camera settings and approach can make a big difference. 

A good starting point is to take 30-second exposures at ISO 1600, using an f-stop of F/2.8. By combining multiple images together (stacking), you can create images of the Milky Way with an even stronger signal (the amount of light collected) and reduced noise. 

Milky Way Photography Tips

The Milky Way Core rising in mid-July. Camera and Lens on Star Tracker.

The Milky Way is the galaxy that contains our Solar System. From our vantage point on Earth, we see it as a noticeable band of light stretching across the night sky.

Usually, when people talk about photographing the Milky Way, they are referring to the dense core of the galaxy towards the constellation Sagittarius.

Observers living in the southern hemisphere have the luxury of seeing this bright core high above their heads in the night sky. Don’t believe me? Look at the position of the Milky Way core in July from my location in Canada vs. Melbourne, Australia.

position of the milky way

The Milky Way core from the Northern Hemisphere vs. Southern Hemisphere.

As you can see, the farther north your latitude is, the less Milky Way core you will be able to see. 

However, the plane of the Milky Way stretches across the sky into northern constellations as well. The photo below shows the Cygnus region of the Milky Way along with many other northern constellations such as Cepheus.

This region of the Milky Way is quite beautiful in its own, unique way. 

Cygnus region of the Milky Way

The “Backbone” of the Milky Way.

From my latitude in the northern hemisphere, the Milky Way core is only observable between the months of April to September. To photograph it in its full glory, I also need to travel to a dark sky location during the new moon phase. It’s possible to see the Milky Way from a light-polluted city, but it is very faint, and difficult to photograph.

I also use a star tracker to compensate for the apparent rotation of the night sky. This allows me to take long exposure images free of star trailing, and collect deep details of the Milky Way. The star tracker I recommend for Milky Way photography is the Sky-Watcher Star Adventurer.

Sky-Watcher Star Adventurer 2i

I recommend the Sky-Watcher Star Adventurer for Milky Way Photography. 

In the following post, I’ll describe my experiences photographing the Milky Way with a DSLR camera. I’ll share the camera settings used, and specific astrophotography tips to help you capture your own image of this natural wonder.

Milky Way photography

The Milky Way captured using a Canon Rebel DSLR and a Rokinon 14mm F/2.8 lens.

How to Photograph the Milky Way

Have you ever tried to photograph the Milky Way with your DSLR camera?  It’s no secret that your digital camera can record much more light than your eyes can see. For this reason, amateur photographers can create incredibly detailed portraits of the Milky Way Galaxy using modest equipment.

All you need is a DSLR camera capable of shooting in manual mode, and an entry-level camera lens. An entry-level DSLR camera and kit lens is a great starting point. such as the Canon EOS Rebel T7 is a great starting point. 

An entry-level camera kit will allow you to explore long-exposure astrophotography, and experience the incredible amount of light you can record in the night sky. 

milky way photography

The Milky Way. Canon EOS Ra with a Sigma 24mm F/1.4 Lens

Before I go any further, I want to properly set your expectations. My first images of the Milky Way did not look like this, largely because I was shooting in heavily light-polluted skies. The photo above uses 4 strategies to create an impressive photo of the Milky Way:

  • A tracking camera mount (Sky-Watcher Star Adventurer)
  • A “fast” camera lens (Sigma 24mm F/1.4)
  • Long-exposure images (30-seconds) to collect more signal in a single frame
  • Image stacking to improve the signal-to-noise ratio (Photoshop)

I’ll cover each of these aspects in this article. A star tracker that compensates for Earth’s rotation is not necessary for success, but it will help pull in more light in a single exposure without star trailing.

It gives you more flexibility in the camera settings you choose to shoot the Milky Way, as you can now offset higher ISO settings and low f-stops with longer exposures that use a lower ISO, and slower aperture.iOptron SkyTracker

The iOptron SkyTracker Pro Camera Mount.

The biggest advantage a tracking camera mount has over a stationary tripod is the ability to shoot exposures well past 30-seconds. When the star tracker has been properly polar-aligned, images of 2-minutes or more in length are possible (depending on your focal length).

Images that have been captured under dark moonless skies will reveal the individual nebulae and star clusters within the Milky Way galaxy. Certain Messier objects, such as M8, M17, and M20 become obvious glowing pink regions of Sagittarius.

The Milky Way doesn’t just mean the Core of our galaxy, it extends beyond Sagittarius towards the constellation Cygnus the swan. This area of the Milky Way is less dense but contains some of my favorite deep sky objects within it.

The photo below showcases the Milky Way and the Great Rift in the direction of Cygnus. The Summer Triangle also stands out prominently in this image, featuring the stars Vega, Deneb, and Altair.

the great rift

The Cygnus area of Milky Way and the Great Rift.

The image above was captured during another memorable trip to the Cherry Springs Star Party. Several images were captured using a DSLR camera on a SkyTracker Pro camera mount.

The Great Rift is a dark band that appears to obscure the center of our galaxy when seen from Earth. It is comprised of molecular dust clouds that sit between our Solar System and the Sagittarius arm of the galaxy. It forms a dark lane that divides the bright band of the Milky Way.

Basic Milky Way Photography (and Nightscape) Setup

The following equipment profile is the exact one I have used for actual Milky Way photos. Essentially you need a portable star tracker, and a camera and (wide-angle) lens combo that excels in low-light situations. 

You do not need to mirror this setup to capture a great Milky Way photo, but it should give you an idea of what a typical wide-angle astrophotography rig looks like.

  1. Camera: Canon EOS R
  2. Adapter: Canon EF-EOS R Adapter
  3. Lens: Sigma 24mm F/1.4
  4. Star Tracker: Sky-Watcher Star Adventurer
  5. Tripod: Radian Carbon Fiber Tripod
  6. Remote Shutter: Neewer Remote Cable

astrophotography kit

Best Camera Lens for Milky Way Photography

It may surprise you to hear that a camera lens is the best way to capture the Milky Way, not a telescope.

The high magnification focal lengths of a telescope are great for zooming in on deep-sky objects, but to reveal the beautiful structure of the Milky Way, you need to go wide.

A good camera lens for Milky Way photography will allow plenty of light to reach the sensor in a short period of time. Low-light performance is a critically important feature of the lens when shooting at night. 

A ‘fast’ camera lens with a wide aperture is best, as this will give you more options in terms of exposure time and ISO settings.

I have used many lenses for Milky Way and nightscape photography with my Canon camera bodies, and these are a few of my personal favorites.

Sigma 24mm F/1.4

In my experience, the Sigma 24mm F/1.4 is one of the best camera lenses for Milky Way photography. This lens is considered to be wide-angle, although 24mm is not nearly wide enough on a crop-sensor DSLR camera body. 

This lens is best enjoyed with a full-frame camera. This will provide a practical field of view to capture the entire Milky Way core stretching across the sky, and much more. 

Sigma 24mm F/1.4 Art Canon

Sigma 24mm F/1.4 Camera Lens.

It’s a premium quality prime lens from Sigma (part of their Art Series), and the lens performance is exceptional in low-light situations. If you dabble in video work at night (as I do on my YouTube channel), this lens will become your new favorite.

You can read my full review of this lens used for the purpose of astrophotography. 

Rokinon 14mm F/2.8

Another excellent choice is the Rokinon (or Samyang) 14mm F/2.8. This is a fan favorite in the astrophotography community, largely due to its impressive performance for the price. 

You will not find a cheaper ultra-wide angle lens for astrophotography than this. The model I have is fully manual, meaning even the aperture control is done by “clicking” the lens into your desired f-stop.

This lens offers a jaw-dropping 115° field of view on a full-frame camera, allowing you to capture incredible panorama-style images of the night sky. 

Rokinon 14mm f/2.8 lens

Rokinon 14mm F/2.8 Lens.

Recommended Filter

The Milky Way is best photographed without the use of a filter, under pristine, dark, moonless skies. However, if you can’t get to a magical location like this, a mild light pollution filter may help.

The Optolong L-Pro is a broadband light pollution filter, which means that it aims to collect natural star colors that make a great Milky Way photo. In my experience, it does a great job of reducing the artificial glow of the city, without disrupting the natural color balance of your image.

milky way filter

The Optolong L-Pro filter is suitable for Milky Way photography.

The 2″ model shown above can be threaded into the optical train of a camera and telescope configuration, but not with a DSLR camera and lens.

There is also a version for full-frame DSLR cameras (this one is for full-frame Canon DSLR’s) that sits inside of the camera body. A broadband clip-in filter is worth looking into if you plan on capturing Milky Way images in areas with light-polluted skies.

When shooting the Milky Way from a dark sky location, you do not have to use a light pollution filter. This is the ideal scenario, as you will be able to record the natural colors of the stars in the sky without introducing any odd color casts to the image.

Including Foreground Details

Sometimes you will want to capture foreground details in your Milky Way photo, to show the surrounding landscape below the night sky. For a single exposure on a stationary tripod, this is not an issue because the ground is not moving. However, when using a star tracker to capture images without star trailing, the Earth will show movement in as early as 30-seconds, creating a blurry portion of your image.

This creates a challenging scenario for amateur astrophotographers that want to create an image with a stack of tracked shots and terrestrial details that are not blurred. The solution is to create a composite image that combines a separate shot (or stack) of sharp, foreground landscape details with a tracked set of images of the Milky Way. 

To accomplish this, it is very important to blend the images together naturally, avoiding any hard edges between the night sky, and the Earth below. I find that the best way to do this is to use a feathered mask in Photoshop, with the useful refinement options found in the Select and Mask tool. The image below shows what this mask would look like in an image of the Milky Way with trees beneath it. 

landscape astrophotography

Blending images together (using masks) to create a Milky Way composite.

Essentially you want to take a clean shot of the foreground, to replace the blurry version in your night sky stack. The more exposures used for your Milky Way sky, the greater the blurring effect will be on the ground (because more time has passed). You may want to limit your integrated exposure time to about 30 minutes or less, to make the process of blending the images together easier. 

How to find it

It might sound like a silly question, as our own Solar System is located inside of the Milky Way galaxy. However, certain areas of the Milky Way spiral are concentrated in the night sky at certain times of the year.

The galactic core is the most interesting area of the galactic plane, and what most photographers are hoping to capture. The galactic core is the most concentrated area of stars in the galactic plane, and what most photographers are hoping to capture.

Knowing where and when to look will help you to plan your photo session. I use an app for my Android smartphone called Stellarium, which will tell you exactly where everything in the night sky will be on any given night. Stellarium is a handy mobile planetarium that is easy to use.  

Whether you are planning a Milky Way shot or a deep-sky imaging project, this app can save you time and frustration.

I regularly use Stellarium on my PC to plan an imaging session, but having the app on my phone at all times is a real life-saver. Once you know where it is, it’s important to remember some specific camera settings to set yourself up for success.

The Milky Way using 30-second exposures

The Milky Way captured using 30-second exposures on a star tracker mount

Another tool to help you plan your next Milky Way photography session is PhotoPills. You can use the handy planner feature to see exactly where the Milky Way will be from a specific location on the map.

This is a must-have mobile app for many night photography shooters, as it helps you get creative with compositions that include surrounding natural landscapes. See my complete list of essential astronomy and stargazing apps for your smartphone. 

4 Things to remember when photographing the Milky Way

  1. Choose an ISO setting based on your shooting environment. The ISO will need to be much higher than you would normally use during a daytime photo. For moderate light pollution use 1600 to 3200. Pay attention to the histogram, and expose to the right. It’s a balancing act between noise and the amount of light collected. However, with enough image frames, even a noisy image can be smoothed out after stacking.
  2. Use your camera’s widest aperture, or close to it. Generally, you’ll want to let in as much light as possible, in the shortest amount of time. Fast camera lenses of f/2.8 or below may need to be stopped down a bit for better star quality.
  3. Set your camera’s drive mode to a 2, or 10-second delay. Better yet, use a remote shutter release cable. Even the slightest movement created by pressing the shutter button can be enough to shake the stars up in your image. Also, make sure your tripod head is locked securely. A sliding tripod head in any direction will show itself immediately in the form of elongated stars.
  4. Shoot 30-second exposures.  This will maximize the light collected in each individual frame.  Yes, the stars may begin to trail (depending on your focal length), but this will only be evident when zoomed into 100%.

Photograph The Milky Way

The Milky Way using the Rokinon 14mm F/2.8 Lens

The photo above uses 60 x 120-second (2-minute) exposures at ISO 1600 with my Canon EOS Rebel T3i. The lens was at its native focal length of 14mm, and the aperture was set to F/3.2 for a sharper image.

Stopping down the f-ratio of your camera lens is a commonly used astrophotography tip used to create images with sharper stars. This technique sacrifices some light-gathering ability for improved clarity and smaller stars. This is one of the many reasons a star tracker provides more options than a stationary mount. You are able to offset the slower f-ratio with longer subs.

With 2 hours of total integration time, I was able to produce a final high-resolution photo of the Milky Way with reduced noise and much more detail. Here are the exact camera settings used for the photo above:

Milky Way Camera Settings

  • Exposure: 120 seconds
  • ISO: 1600
  • F-Stop: F/3.2
  • White Balance: Auto
  • Number of Frames: 60

If you are not using a tracking mount, similar camera settings will still work, but you may need to increase the overall exposure time to produce similar results. Using a lower f-ratio (such as F/2.8 or below) can help produce a brighter image in a shorter period of time.

The white balance settings on your camera are not as important as you may think. The key is to shoot in RAW file format so that you’re able to adjust individual parameters such as white balance during post-processing.

The following graphic presents some aggressive Milky Way camera settings, using an astro-modified mirrorless camera (Canon EOS Ra). These are the exact settings used to take a picture of the Milky Way core rising over our campsite in July, 2021. 

Milky Way Camera Settings

Image Stacking 

Stacking several long images together using specialing astrophotography software will yield the best results. The process of integration can improve the signal-to-noise ratio of your final photo. 

There are many choices to consider when looking to stack astrophotography image exposures, but I recommend Sequator for beginners. You can watch my Sequator tutorial on YouTube to see how the software works. 

Sequator has a handy “Freeze Ground” feature that allows you to stack tracked images of the night sky with a stationary foreground. This feature works surprisingly well, and you may find this method to be sufficient for your wide-anlge nightscapes. 

Stacking Software for Milky Way Photography

The stacking process registers each image so that the stars align with each other. Subtracting dark frames from your final image is also a key step towards quality data.

Video Tutorial (Stacking in Photoshop)

In this situation, stacking the frames manually in Photoshop can do a better job than DeepSkyStacker. This is because the foreground objects in the image will throw the registration process off in DSS. However, an image of the Milky Way with no foreground landscape will stack just fine in DeepSkyStacker.

You can manually stack your images together using Adobe Photoshop, resulting in a smoother image with less noise. This is especially effective when shooting Milky Way photos using a high ISO sensitivity, as digital noise can really start to show itself. 

Related: How to manually stack your astrophotos in Photoshop

Milky Way Image Processing Tips

For images of the night sky, the preview you see on your camera’s display is only beginning. The true color and beauty of your photo are yet to be brought forth. When you shoot RAW images using a DSLR camera, you open the door to powerful image processing capabilities.  Adobe Camera RAW (ACR) is one of my favorite tools for processing astro images.

Adobe Camera Raw

By capturing your images in RAW format, crucial edits can be made to image during the post-processing stage.  You never want to shoot astrophotography images in JPEG format, as you are losing detail in the image.

I use Adobe Camera Raw to pre-process my images coming into Photoshop. This software supports many different cameras, and allows you to import the images into various Adobe applications from Photoshop to Elements.

Key areas to address in ACR:

  • Adjust white balance – less brown, more blue
  • Apply noise reduction filter (modest)
  • Increase Saturation
  • Reduce chromatic aberration (color-fringing)
  • Correct vignetting issues

The above list is a small sampling of the actions applied to the Milky Way images on this page. For a really powerful image, try running third-party action sets on your image, such as the Astronomy Tools Action Set.

Some of the most effective actions using the package listed above are “make stars smaller” and “local contrast adjustment”. Below, you’ll find an updated image processing video where I process the data from a stacked image in Photoshop.

You may also want to try running Topaz DeNoise AI on the image to remove noise in the darker areas of the image. This is a third-party (paid) plugin, but I have found it to be very effective when processing nightscape-style images including the Milky Way. 

Travel to a Dark Sky Location

This means that you should plan your shot around the New Moon phase. Even a half-quarter moon creates enough light in the night sky to ruin your image. Having New Moon and clear skies coincide with each other can be a tall order.

This is one of the reasons Milky Way photography can be so challenging.

Light pollution can completely wash away the beautiful structure of the Milky Way galaxy. For this reason, it is essential that you leave the glow of the city behind, and travel to a dark sky location. One of the darkest locations I have been to is Cherry Springs State Park. This Bortle Scale Class 2 location is home to the annual Cherry Spring Star Party in Pennsylvania

A camping trip can offer a fantastic opportunity for night photography, as these areas are usually well away from the city. Use a planetarium software such as Stellarium to preview the position of the Milky Way core from your vantage point.

I hope that you have learned a few pointers to apply on your next night of photography.  I encourage you to set aside some time to observe the Milky Way under dark skies and feel the overwhelming connection to our universe.

Wide-angle full-frame

The Milky Way from Northern Ontario during the Perseid Meteor Shower

Keys to a great Milky Way image:

  • Use a wide-angle camera lens to capture a large portion of the Milky Way (17mm or wider is best)
  • Use a higher ISO setting than you would normally use during the day to collect more signal 
  • Use your cameras lowest f-stop to collect as much light as possible in a single exposure
  • Shoot in RAW mode to adjust variables such as white-balance in post-processing
  • Pay close attention to the histogram and “expose to the right”
  • Focus using your DSLR’s live view function on a bright star at 10X magnification
  • Set your camera’s drive mode to a 2 or 10-second delay to avoid camera shake
  • Use a star tracker that has been properly polar aligned to take longer exposures
  • Use a remote shutter release cable to automate an imaging sequence
  • Fasten your DSLR camera securely into place on your tripod or star tracker
  • Take multiple long-exposure images to stack and improve the signal-to-noise-ratio
  • Shoot dark frames of the same temperature and exposure length to subtract during the stacking process

Photographing the Milky Way with a Smartphone

Yes, it is possible to photograph the Milky Way with a modern smartphone. In fact, I captured the image shown below of the Milky Way core using my Samsung Galaxy S21 Ultra.

smartphone astrophotography

The Milky Way captured using my cell phone. 

I used the “Pro” camera mode (not night mode) for complete control over the camera settings. I recorded a single 20-second exposure at ISO 1600 with the phone propped up against a picnic table.

I understand that photographing the Milky Way with a smartphone is an exciting idea for many people because it might be the best camera (or only camera) you own. The problem is, the tiny sensor on modern smartphones simply weren’t meant for long exposure low-light photography.

Although the results are impressive from considering it was taken from a phone, the image lacks the structure, color, and detail I have come to expect using a DSLR or mirrorless camera. 

I am interested to see the results possible when several exposures are stacked and processed as you would with a typical astrophotography image. 

Download My Image Processing Guide

If you would like to learn about every astrophotography image processing technique I use in DeepSkyStacker and Photoshop, you can download my premium guide. The PDF download contains over 100 pages of the specific steps I take to process all of my images. The guide is available here.

image processing guide

Related Content: