Skip to Content

camera lens

8 Nightscape Photography Tips for Amazing Astrophotography

|Image Processing|7 Comments

Nightscape photography involves capturing a landscape style image, at night. It can include the beautiful Milky Way, a starry sky, or your favorite constellation.

This is a type of astrophotography, where long exposure images are taken to reveal the beautiful light of a seemingly ‘dark’ sky. Star photography requires quality optics, and some camera lenses are better suited for it than others. 

To really make your nightscape image amazing, you’ll want to capture an interesting foreground, too. This can be snowy mountains, a waterfall, or in my case, just a dark, wooded forest.

In the video below, I capture the constellation Orion on a not-so-clear night, using my nightscape photography camera setup including a star tracker.

8 Nightscape Photography Tips for Beginners

Astrophotography has one of the steepest learning curves of any type of photography, but it’s also one of the most exciting. It may seem easier to take a great nightscape image than a high magnification deep-sky image of a galaxy or nebula, but I consider it to be much harder.

If you have a background in landscape photography, you’ll have a huge head start going in. All of the daytime photography best practices including composition and the rule of thirds can help your nightscape image stand out. 

The Milky Way

The Milky Way stretches across the night sky. Several nebulae in Cygnus are visible.

If you want to take beautiful nightscape photography images, there are a few best practices to keep in mind. I have captured many astro-landscapes using a regular DSLR camera and kit lens that absolutely blew me away, and there are a few things all of those photos had in common.

  1. Get to a dark sky location (Bortle scale class 4 or better)
  2. Use a star tracker for long exposure images (Separate images of sky and foreground)
  3. Shoot during the new moon phase (Use crescent phases to illuminate the scene)
  4. Visit your location during the day first (Plan a safe route back to your location)
  5. Choose a subject that compliments your location and time (Seasonal constellations)
  6. Frame your subject in a creative way (composition, rule of thirds, light painting)
  7. Live-view focus on a bright star (stop down your lens for better stars)
  8. Use the right settings for a clean shot (keep ISO low, and shoot long)

As simple as these tips may seem, in a real-world setting, everything must come together at once for a truly amazing nightscape image. I will now explain each of these steps in detail. 

Milky Way Photography

Get Dark

Unlike deep-sky astrophotography through a telescope, it is very difficult to calibrate wide-angle nightscape shots to remove light-pollution and gradients. 

To capture vivid star colors, defined constellations, and even faint deep-sky nebulae and galaxies within the starfield, you must get away from the city lights.

Fortunately, this lends itself well to nightscape photography. Locations that are free of light-pollution are often natural areas that include beautiful landscapes of trees, water, mountains, and more natural wonders. 

Plan your nightscape photography session using an app such as Photopills, or simply a light pollution map that reveals the darkest spots in your area. 

light pollution map

Plan your next photography trip using a light pollution map.

Even a dark sky site will usually have a glow coming from a certain direction. You can either avoid this area of the sky, or play off of the glow to add to the overall composition of the image.

In the image of the Milky Way core shown below, you’ll notice a warm glow at the bottom right of the image frame. This is light pollution from the city of Erie, Pennsylvania across Lake Erie. 

Milky Way astrophotography

Track the Motion of the Sky

A star tracker is a convenient way to capture long-exposure night sky images free of star trailing. Once polar aligned with the celestial pole, you can capture incredibly deep images of space that include areas of nebulae, galaxies, and star clusters.

It is possible to capture amazing nightscape images without a star tracker, but you’re camera settings and approach to the shot will be more limited.

For example, when your camera is tracking the motion of the night sky, you can scale back ISO and aperture settings, and let the exposure time compensate for any lack of signal. This can help collect a cleaner, sharper shot.

Because the exposures of the night sky are moving independently from the ground below, you will need to capture a separate (still) image of the foreground and merge the two together (more on this below).

star tracker for astrophotography

My Sky-Watcher Star Adventurer 2i (star tracker). 

A star tracker must be accurately polar aligned to track the stars effectively. I use an app on my mobile phone called ‘Polar Finder’ to give me a real-time reference for the position of Polaris (the North Star).

Related: Ultimate List of Astronomy and Stargazing Apps for Your Mobile Phone

New Moon Phase

Unless you are planning to photograph a moonlit landscape (there are benefits to the moon’s light for the foreground landscape), you’ll want to plan your session during the new moon phase. 

I regularly see new astrophotographers planning trips to a dark sky location during a full moon. This defeats the purpose of finding a dark sky because the moon washes out everything except the brightest stars in the night sky.

Use a moon phase calendar to plan your trip around the week surrounding the new moon. This will give you the best chance of capturing the most amount of stars in your image as possible.

A waxing crescent moon that sets later on in the night (or waning crescent that rises late) is okay, too. The closer your trip lands to the new moon phase, the better.

Over-exposed moon

The moon is beautiful in its own right, but it is not ideal when capturing starry nightscape images. Moon photography is another type of astrophotography all together. 

A Journey in the Dark

Depending on where you are located, it may be difficult to find areas with a good mix of land and sky. Looking over a large, open body of water is great, but the foreground lacks interest because it is flat.

An area with high elevation has advantages in terms of sky transparency, and can also help you line up fascinating landscape features below the sky. A location that looks down over a valley or rocky water’s edge is a great start.

Make a trip out to your location during the day, and pay attention to features that may add interest to the shot. Like any great landscape photo location, you’ll need to make sure you can safely set up your camera equipment.

Taking photos in the dark adds another challenge to the mix. Take note of the area during the day, and any spots that will be difficult to navigate with only a headlamp to guide your way. 

The Milky Way Galaxy

The Milky Way photographed from a dark sky site away from city light pollution.

The Perfect Subject

The constellations and stars in the night sky appear to move throughout the year. This means that you can’t just choose the area of the sky you want to shoot and find it when the sky clears.

Use a planetarium app on your phone like Stellarium to get a preview of the night sky on the day of your photography trip. Not only are you limited to the constellations and stars of the season, but the ones that lie in the direction of your intended landscape. 

I like to photograph constellations as they rise in the east, so I typically look for landscape locations that include a clear open view in this direction. Capturing constellations setting in the west feels like a race against the clock, as they slowly fall deeper into the ground. 

Some of the best nightscapes are photos that tell a story about the location and time of year. An example is the constellation Orion in the winter sky, with a cold, snowy landscape below. 

star map

The Stellarium Online Star Map is a free tool to plan your night sky scene.

Framing the Scene

A wide-angle lens is a landscape photographer’s best friend, and the same is often true for nightscape photography as well. This will allow you to collect the widest possible scene that includes land and sky.

How wide is too wide? Unless a ‘fisheye’ view is the look you are going for, a lens with a focal length of about 14-18mm is great. The type of camera you’re using will change your overall field of view.

I find that my Sigma 24mm F/1.4 Art lens is great for wide-angle nightscape shots on my full-frame camera. On a crop sensor camera, this would be a little tight. If you’re using a crop-sensor (APS-C) camera, stick to a wider focal length of at least 18mm. 

A wide-angle landscape lens is ideal because you can capture a wide area of the night sky that includes multiple constellations and stars. Then, you can crop the image in post to isolate a particular area of interest. 

Achieving a Sharp Focus

Focusing a camera lens for astrophotography can be challenging. The trick is to allow as much light to reach the sensor as possible, and then use the camera’s live view setting to adjust focus in real-time.

You can then zoom in on an area of the image at the focal plane of the stars, and manually focus the lens. On Canon DSLR and mirrorless cameras, you’ll be able to magnify your image by 5X and 10X (30X with the Canon EOS Ra).

Once you have focused the lens, you can dial back the settings and take your shot. Some people like to mark the focus point on the lens with a white piece of tape. 

how to focus camera lens for nightscapes

I recommend the following camera settings to use when focusing your camera lens: 

Camera Lens Settings for Focus (Adjust After)

  • Mode: Manual/Bulb
  • Focus Mode: Manual
  • ISO: 6400 
  • F-Stop: F/2.8 (or below)
  • Exposure: 30-seconds

These settings should allow enough light in so that you can focus on a bright star. If you can find some medium-sized stars in the frame (or better yet, a cluster of varying star sizes), you can really dial in the focus.

Remember to scale back the settings like ISO, exposure, and f-stop for your long exposure images. Next, I’ll explain the camera settings I use to take nightscape photography images like the one below.

nightscape photography example

Nightscape Photography Camera Settings

For nightscape photography (and astrophotography in general), you want to maximize light transmission through the optics to the camera sensor. There is an exception to this of course when you begin to lose the quality of the stars in your image.

Photography at night requires exposures that are much longer than they would typically be during the day. This could be anywhere from 5-seconds to 3-minutes. 

If your camera lens has a maximum aperture of F/2.8, that’s a great place to start. Lenses that are even faster than that, in the F/1.8-F/2 range have an edge over the competition when it comes to astrophotography.

Milky Way Photography

The lens aperture is a critical specification to consider when choosing a camera lens for astrophotography. For nightscape photography, you will find the maximum aperture of your lens (or close to it) the most effective for your projects.

Your exposure time on each individual image will depend on the focal length of your lens, and whether you are using a star tracker or not. You can use the 500 Rule as a general rule of thumb when capturing images of the night sky on a stationary tripod.

The best ISO settings for night photography is a conversation that has been debated to death. Generally, a high ISO setting will introduce more camera noise in the image than a low one. Some cameras are ISO invariant for much of their ISO range.

The answer to this question depends on the camera you are using. For my Canon EOS Ra, ISO 1600, or ISO 3200 work well. I recommend shooting your nightscapes at ISO 800 to start. If the images appear clean, you can try bumping the ISO setting to 1600 for a brighter image.

The file type must be RAW for you to tap into the powerful features of software like Adobe Camera Raw after the image has been taken. This will allow you to change the white balance, adjust clarity and saturation, and much more. 

Here is a breakdown of the settings I use for a typical nightscape image:

Camera Settings for Nightscape Images

  • Mode: Manual/Bulb
  • Focus Mode: Manual
  • ISO: 1600 
  • White Balance: Auto/Daylight
  • F-Stop: F/3.2
  • Exposure: 90-seconds

As you can see, I have adjusted the settings from the ones used to focus the camera lens. The reason I like to lower the f-stop from F/2.8 to F/3.2 (despite losing light-gathering ability), is because this will sharpen up the image, particularly the stars at the edges of the frame.

The exposure time is also much longer (90-seconds), and this is only possible when a star tracker is used to compensate for the apparent rotation of the night sky. A separate, shorter exposure should be captured for the foreground to avoid blurring the landscape. 

To automate a sequence of exposures to fire off, I use a simple remote shutter release cable to control the camera. This allows me to choose the duration of the image, the number of images, and any delay between shots.

I typically shoot between 25-50 image exposures for a single project. Aim for at least an hour of overall exposure time to create an image with a healthy signal-to-noise ratio. I do not normally take dark calibration frames for my nightscape images as I would for a deep-sky project. 

As for choosing the right exposure, use the histogram to guide you. A well-exposed image will show the bulk of the data in the center, or just to the right of the histogram without clipping in either side. 

If you notice the highlights are clipped on the right-hand side of the histogram, you can reduce the exposure time, lower the f-stop, or dial back your ISO. I recommend lowering your ISO setting if possible. 

Below, is a typical looking histogram for one of my nightscape images. The second (left) peak of data is the shadows in the foreground portion of the image. 

histogram

A typical foreground image exposure could be 30-seconds long, enough to expose the dark landscape beneath the sky. This is where a setting or rising crescent moon can help illuminate the scene.

If you do not have a star tracker, stick to 30-second exposures. If the stars begin to trail in a 30-second exposure, scale the exposure time back until they are recorded at an acceptable level of sharpness. 

Light Painting

The concept of light painting refers to the act of shining light on a dark area to brighten it through a long exposure image. Even a subtle shine of a red headlamp can add color and light to selective areas of your image.

You simply need to take a long exposure image (eg. 10-seconds), and shine a light on the area you wish to highlight. It is very experimental, and the right settings will depend on the lighting effect you are going for. 

White light can help illuminate an otherwise dark area of the foreground, whether it is a rock, a handsome tree, or a path on the ground. Light painting allows you to add interest to the image by highlighting specific areas of the landscape.

In the image below, I used my red headlamp to draw the viewer’s eye to the crunchy snow and footprints on the ground. Painting with light can help add to a pleasing composition.

light painting

Post Processing

Processing a nightscape photography image takes time and patience. A great shot starts in the field behind the camera, but your processing skills will take it to the next level.

Adobe Photoshop is the tool of choice for most nightscape photographers. It offers the advanced processing tools needed to correct gradients, boost saturation, adjust levels, and much more. 

Some of the basic post-processing techniques applied to a nightscape image include color balancing, curves adjustments, noise reduction, saturation boost, and sharpening. 

Image Stacking

Before processing the final image, I recommend creating an intermediate file by stacking a series of exposures together. The stacking can be done manually in Photoshop, or with the help of an image stacking tool like Sequator

Seqautor is extremely easy to use and gives you some simple tools to enhance the image. This includes auto-brightness, high dynamic range, and enhance starlight. I use this tool in its simplest form, and leave all of the additional settings ‘off’ except for ‘remove dynamic noises’.

The main purpose of the tool is to build a clean image with less noise than a single exposure, and even a stack of 10 light frames will accomplish this. Make sure you use the irregular mask to select the night sky in the image without including the foreground landscape. (Here is a great tutorial by Alyn Wallace).

sequator tutorial

Sequator is a free astrophotography stacking program. 

Stacking a set of 10 image exposures or more will improve the signal-to-noise ratio, providing you with a cleaner image with plenty of depth and detail. You can still create a great image with a single exposure, but noise will creep up as you adjust levels and perform other enhancements to the image. 

To complete the image, you must merge the stationary foreground landscape with a ‘moving’ sky. The foreground will appear blurry in a tracked shot, so separating the two elements of the image using a layer mask is recommended (see below).

how to create nightscape image

Adobe Photoshop’s Select and Mask tool is a great way to carefully make your selection, and refine the edges of your landscape. Keep the foreground element of your image separate, and carefully remove the sky from the horizon upwards. 

Then, apply the foreground to the stacked image (of the night sky and blurry ground below) as a new layer on top. This way, you’ll have the benefits of a stacked sky image, with a sharp landscape below. You can move the background sky layer independently from the foreground, an experiment with different compositions.

Enhance Stars and Constellations 

If you’ve ever noticed how certain constellations, asterisms, and bright stars seem to stand out in a nightscape image, there is some magic behind this. You can carefully select these elements of the image and brighten them. You can also boost saturation. and add a subtle glow.

The easiest way to achieve this effect is during the image acquisition stage. A thin layer of high clouds in the sky (poor transparency), will naturally add a beautiful glow to the brightest stars in the sky. You never know when these conditions will occur, but it’s something to look out for.

Starglow Filter

You can also use a filter (such as the Alyn Wallace Starglow Filter), to create this effect when the skies are completely clear. A starglow filter threads externally to your camera lens and can be combined with other nightscape filters if desired. 

There are a few techniques you can try in Adobe Camera Raw to add interest to specific stars (and bright nebulae) in the night sky. The clarity and dehaze sliders can make a dramatic difference to your night sky image. You will need to experiment with these settings and adjust this enhancement to your liking.

Creating a star mask on the brightest stars of the image lets you adjust aspects such as saturation, and brightness independently from the rest of the image. This is a great way to help isolate a specific constellation or star pattern in the image.

clarity and dehaze

Use the Clarity and Dehaze sliders in Adobe Camera Raw to enhance a starry landscape. 

Top Processing Tools

The process of enhancing a nightscape image mirrors many of the techniques used for deep-sky astrophotography. If you are interested in learning the specifics of this process, consider buying my premium astrophotography image processing guide.

image processing guide

My image processing guide includes topics such as image stacking, and create a composite nightscape image in Photoshop.

Recommended Camera Equipment

It may surprise you to know that the camera equipment needed for nightscape photography is much more affordable than a deep-sky imaging rig. You do not need a robust equatorial tracking telescope mount to take great, wide-angle images of the night sky. 

Many of the same camera settings and tips that work well for deep-sky astrophotography apply to nightscapes, on a smaller scale. A large telescope with plenty of magnification is of no use for wide-field nightscape images.

For nightscapes, being portable and lightweight is of the utmost importance.

Tripod

Whenever you are taking long-exposure images (tracked or not), your tripod becomes very important. This is the stable platform that anchors your entire camera setup.

Do not skimp on your tripod, invest in a high-quality base that will reliably carry your expensive camera and lens in all sorts of outdoor situations. Choose a tripod that is strong, but also light enough to travel with for long distances.

An aluminum tripod is strong, but some are too heavy for travel. I suggest a high-quality carbon fiber tripod with a weight capacity of at least 25-30 pounds. I use a Radian Carbon Fiber tripod that is very lightweight, and very strong (50-pound payload capacity).

The best part about this tripod is its ability to unlock at the base, and rotate freely. This comes in handy when the equatorial head of the star tracker needs to be rotated during polar alignment. 

best tripod for nightscapes

Star Tracker

A star tracker will not only allow you to take long-exposure images that have sharp, round stars but will reveal deep-sky nebulae and galaxies as well. Under dark skies, a 90-second exposure will reveal faint dust, glowing nebulae, and rich star fields. 

A star tracker is essentially a simplified, portable version of a large GoTo computerized telescope mount. It does not include a computer database of deep-space targets for you to slew to, you’ll have to find objects on your own.

The iOptron SkyGuider Pro and Sky-Watcher Star Adventurer are my top choices. You can see the Sky-Watcher Star Adventurer camera tracker attached to the base of the tripod in the image below. 

astrophotography equipment

Camera

Any modern DLSR or Mirrorless camera with an interchangeable lens is capable of amazing nightscapes. My first astrophotography camera was a Canon EOS Rebel XSi (450D), and I took some amazing images of constellations, aurora, and starscapes. 

A full-frame sensor has a big advantage when it comes to nightscapes. The large sensor will utilize the native focal length of a wide-angle camera lens without cropping the image. 

A DSLR/Mirrorless camera allows you to take RAW images (that can be adjusted on your computer later) and gives you complete manual control of the settings. I currently use a Canon EOS Ra mirrorless camera for nightscape photography. 

best camera

I use a Canon EOS Ra Mirrorless camera for nightscape photography. 

It features an astro-modified camera sensor that is sensitive to the h-alpha wavelength of the visible spectrum. This is handy when photographing areas that include many of the most popular nebulae in the night sky. 

You do not need a modified astrophotography camera to take stunning nightscapes. A stock camera will simply limit the amount of ‘red’ that is recorded in certain areas of nebulosity. Reflection nebulae, star clusters, and most galaxies are totally unaffected.

In my experience, light-pollution filters are not nearly as effective when used with a camera lens in a wide-angle photo. Shoot unfiltered, and get away from city lights for a natural-looking sky. 

Camera Lens

A standard kit lens will do just fine, but a camera lens with a faster f-stop is even better. My personal favorite nightscape photography lens at the moment is the Sigma 24mm F/1.4 Art series lens. 

A 24mm focal length is just wide enough to capture a large area of the night sky when used with a full-frame camera. If you are using a crop-sensor camera, you’ll want something wider for capturing nightscapes. 

Sigma 24mm F/1.4

When it comes to camera lenses for astrophotography, the most important features are a fast f-ratio, a sharp/flat field, and a chromatic aberration-free image. Some lenses cause color-fringing around the bright stars, which can be difficult to correct in post.

The Canon EF 17-40mm F/4L is a solid choice, although faster optics would help collect more light in a single shot.

Another great lens for landscape astrophotography is the Rokinon 14mm F/2.8. This lens is extremely affordable and performs exceptionally well considering the price. 

A wide-angle lens allows you to capture longer exposures without star trailing when mounted to a stationary tripod. A longer focal length lens of 50mm or more will limit your exposure times (untracked) and will make framing a landscape scene a challenge. 

There are many great camera lens options available for nightscape photography, but here are a few of my personal favorites. All of these lenses were mounted to Canon cameras.

If you use a Canon camera with the new RF mount (such as the Canon EOS Ra), you will need to buy a Canon EF – EOS R adapter to use these EF mount lenses.

The Bottom Line

A great nightscape image can include a constellation, the Milky Way, auroras, or even the moon and planets. I believe the key to a memorable nightscape image is to tell a story of the location and time of where it was taken.

Try to replicate the feeling you had in the moment, and how magical the sky appeared above your head that night.

Space is impossibly beautiful and captivating. Once you learn the basics of nightscape photography and begin to apply some of the tips outlined on this page, I think you’ll find it a lot easier to tell your story.

star photography

Helpful Resources

Related Tags

The Rokinon 135mm F/2 was Built for Astrophotography

|Camera Lenses|19 Comments

In this post, I’ll explain why I think the Rokinon 135mm F/2 is the perfect addition to an arsenal of astrophotography lenses. 

Deep-sky astrophotography is often associated with a camera and telescope, but the truth is there are a lot of great camera lenses for astrophotography out there. In the past, I’ve covered a number of different lenses, from the Sigma 24mm F/1.4 to the Canon EF 300mm F/4L.

As you know, camera lenses come in varying focal lengths, apertures, and optical quality. Astrophotography is one of the ultimate tests of lens quality, as long exposure photography of deep-sky objects in space can highlight issues that are hidden during daytime photography.

In this post, I’ll share my results using an affordable prime telephoto lens for astrophotography, the Rokinon 135mm F/2.0 ED UMC. The version I have has the mount for Canon EOS camera bodies, but there are several different lens mounts available on Amazon.

Rokinon 135 F2 ED UMC

My Canon EOS 60Da with the Rokinon 135mm F/2.0 mounted to a Fornax Mounts LighTrack II.

This lens is available for several camera mounts, including Nikon, Sony, Pentax, Samsung, and Fuji. I purchased this lens for the purposes of wide-field deep-sky astrophotography from my light-polluted backyard (shown below), and when traveling to a dark sky site.

Taking images at this focal length from the city will swell issues with gradients, especially when shooting towards the “light dome”. For this reason, a combination of a good light pollution filter, and the use of flat calibration frames are recommended. Before I go any further, I’d like to share a photo from Gabriel Millou of the Andromeda Galaxy using a Canon 1300D.

Samyang 135mm F/2

The Andromeda Galaxy using the Rokinon 135mm F/2.0 ED UMC lens. 

To see even more example photos using the Rokinon 135mm lens (or Samyang branded version), go ahead a perform a search on Astrobin or Flickr, with the appropriate filter. I think you’ll find that this lens is behind some of the most amazing wide-field astrophotography images online!

The Rokinon 135mm F/2 ED UMC

The full name of this lens is the Rokinon 135mm F/2 ED UMC, with “ED” standing for extra-low dispersion, and UMC referring to the “ultra multi-coated” optics. This is a fully manual lens, meaning that it does not have autofocus, and you must manually select the f-stop using the aperture ring at the base of the lens.

Manually focusing a lens for astrophotography is nothing new, but the manual aperture ring adjustments may feel a little strange at first. 

Rokinon lenses are made in Korea, and so is the Samyang variation. The full extent of the relationship between Rokinon and Samyang is unknown to me, but the packaging on my lens says “Technology by Samyang Optics”. I typically shoot with Canon lenses, but the potential for low light photography (whether that’s astrophotography or the ability to film at dusk) caught my interest.

Rokinon 135mm F/2 lens specifications

The diameter of the lens is 77mm, with a non-rotating filter mount on the objective lens. The lens hood is removable (and reversible), which makes packing the Rokinon 135mm away into the included lens pouch possible. The presentation and hands-on look and feel of the 135mm F/2 lens is impressive considering the reasonable price of this lens. 

The aperture range of this lens is F/2 to F/22, with 9 diaphragm blades (aperture blades) that work in harmony to set your f-stop. The aperture ring is marked with each f-stop, and you need to manually click through F/2 – F/22 and watch the blades do their work. It’s actually kind of neat to watch!

I ordered this lens on Amazon, utilizing my Amazon Prime membership. The lens arrived next day, less than 24 hours after I hit the order button. The lens came in a handsome box, with core specifications and a lens construction diagram printed on the side. The Rokinon 135mm F/2.0 includes a lens hood, lens pouch, front and rear lens caps, and a 1-year Rokinon manufacturer warranty.

First Impressions

Overall, the lens feels very solid and well constructed. The finish and texture of the Rokinon 135mm F/2 is a step up from the 14mm F/2.8 I ordered a few years ago. 

The spec sheet for the Rokinon 135mm F/2 boasts a number of qualities, with the ones listed below being the most important when it comes to night photography and astro. Based on my handful of experiences with this lens in the backyard, I have found these traits to hold true.

  • Low-Light Performance
  • Low Chromatic Aberration
  • Low Flare and Ghosting

The image below highlights the creative freedom this lens provides. To fit the Heart and Soul Nebulae in a single frame requires an extremely wide field of view (compared to the magnification of most telescopes). The 135mm focal length is absolutely perfect for the Heart and Soul Nebulae if you’re using a crop sensor DSLR camera.

The image shown below covers 4.96 x 5.98 degrees in the constellation Cassiopeia. The images were collected using a Canon EOS Rebel T3i camera riding on a Fornax Mounts LighTrack II

heart and soul nebula

The Heart and Soul Nebulae captured using a DSLR and the Rokinon 135mm lens. 

The Rokinon website lists this lens as being useful for portraiture photography, and most telephoto applications. The shallow depth of field present at its maximum aperture does indeed create a pleasing bokeh. 

The lens hood is not petal-shaped, which is great news for those using this lens for astrophotography. The flat lens hood design allows you to easily take flat frames with the Rokinon 135mm using the white t-shirt method or using a flat panel. 

I should mention that I have only tested this full-frame lens using my astrophotography DSLR’s, all of which are crop-sensor camera bodies. This creates an effective focal length of roughly 200mm, a useful magnification for a wide variety of astro-imaging scenarios. 

I am no stranger to the full manual control of this lens, for both aperture and focus. The Rokinon 14mm F/2.8 was the first lens I had ever used like this, and these aspects do not hinder the astrophotography experience whatsoever. 

A Full Frame, Prime Lens

The Rokinon 135mm F2.0 is considered to be a full-frame lens because it can accommodate a full-frame image sensor with its 18.8-degree angle of view. In this review, however, I am using the lens on a crop sensor (APS-C) Canon EOS 60Da, which puts the field of view at 12.4 degrees.

“Prime” means that this lens is fixed at 135mm, it is not a zoom lens that allows for focal length adjustments. Prime lenses are typically lighter as they do not need the additional glass and mechanics required to zoom at varying magnifications. 

Generally, prime lenses have a reputation for being slightly sharper, and I have found that to be true whether I am shooting a nebula or a Scarlet Tanager. 

The optical design includes one extra-low dispersion (ED) lens element to control chromatic aberration, and “ultra multi-coatings” (UMC) to both improve light transmission and reduce flare. 

lens focal length

The flat lens hood is great for taking flat frames after a night of astrophotography.

Low Light Capabilities at F/2.0

The F/2.0 maximum aperture of the Rokinon 135mm lens offers a chance to collect a serious amount of signal in a single shot. This allows for less aggressive camera settings for night photography such as using a lower ISO setting and shorter exposure. 

Of course, when it comes to astrophotography, this can create some challenges as well. Focusing a “wide open” F/2 lens is demanding of the optics, especially on a field of stars in the night sky. 

One way to combat potential soft images and chasing perfect focus all night is to stop the lens down to F/2.8 or even F/4. Your images have a chance at remaining sharper once critical focus has been achieved, but now you have lost the extra light-gathering power you wanted. It’s a trade-off, and one that seems to surface time and time again in this hobby.

Although typically unused in astrophotography, I did get a chance to see the beautiful bokeh this lens creates when shooting at F/2. The aesthetic quality of the blur in the out-of-focus parts of the image are buttery smooth and soft. 

lens for astrophotography

What I Really Like

Although this lens feels solid, it is rather light when compared to a telescope. When coupled with my Canon DSLR camera, the entire system weighs just over 3 pounds. That means that it doesn’t require a robust equatorial telescope mount as a larger, heavier telephoto lens would. 

A camera tracker (or “star tracker“) is necessary for long exposure deep-sky astrophotography, but a compact model such as the iOptron SkyTracker or Sky-Watcher Star Adventurer will do just fine. 

This lens has a long focus adjustment ring, with great tension. The focuser adjustment rotates roughly 270 degrees, meaning fine-tuning on a bright star is more precise. You’ll never have to worry about losing your position just by touching the lens, but you can always tape the position down to be sure. 

The Rokinon 135mm F/2.0 ED UMC is one of the most affordable and practical lenses for astrophotography on the market. Sure, the “Nifty 50” is an incredible value (and a LOT cheaper), but the 135mm puts you within range of some of the best astrophotography targets in the night sky. 

I’ve spent a handful of nights testing this lens in my Bortle Scale Class 6/7 backyard, and my results live up to the hype it gets in terms of astrophotography performance.

Comparable Lenses (Chart)

Lens Comparison

Brand Focal Length Maximum Aperture Price
Canon 135mm F/2.0 $999 (B & H)
Nikon 135mm F/2.0 $1,391 (B & H)
Sony 135mm F/1.8 $1,898 (B & H)
Rokinon 135mm F/2.0 $499 (Amazon)

Lens Comparison

Over the years, I’ve shot deep-sky targets at varying focal lengths from 50mm to over 1000mm. The closest I’ve been to the 135mm range is 105mm on my Canon 24-105 zoom.

Not only does the Rokinon 135 add additional reach, but I can also now shoot at F/2, instead of F/4 on the Canon. Below, are a few examples of astrophotography images I’ve taken with lenses of varying focal lengths. 

As you can see, the magnification of the lens used will dictate the type of projects you shoot.

lens comparison

  1. The Great Rift of the Milky Way – Rokinon 14mm F/2.8 
  2. Mars meets Pleiades – Canon EF 24-104mm F/4L
  3. Wide-field Sadr Region – Rokinon 135mm F/2.0
  4. The Carina Nebula – William Optics RedCat 51

So what’s so great about shooting at 135mm anyway?

The RedCat is deeper at 250mm, and after that, you’re into 300-400mm territory which pulls galaxies and nebulae even closer. Why take a step back from 250 to sit between the RedCat and the 24-105?

It’s all about framing.

Image Scale at 135mm

From the moment I reviewed the first sub-exposure on the display screen of my camera, I feel in love with the mid-range magnification of a 135mm lens. My first shot was a section of the constellation Sagittarius that included the Lagoon Nebula, and Trifid Nebula.

If you want to preview the image field you can expect with a particular camera sensor and lens combination, Stellarium features a useful tool. The Image Sensor Frame tool lets you enter in the size of your camera sensor, and focal length of your lens (or telescope) to display a frame over the star map.

This is a very practical way to plan your next astrophotography project, and especially handy when using a wide field lens like the Rokinon 135mm F/2. 

astrophotography scale

You can use Stellarium to preview the image scale with the 135mm lens and your DSLR. 

At 135mm, you can get really creative about the object or objects you shoot and where you position them within the frame.

And because you can shoot between F/2 and F/4, plenty of light reaches the sensor in a relatively short exposure. This has several advantages from less demanding tracking accuracy, to being able to use a lower ISO setting.

The Downsides of this Lens

Now, I have to admit that up to this point, it sounds a little too good to be true. The downsides of this configuration are that shooting wide open can make focusing difficult.

The focuser adjustment ring on the Rokinon 135mm F/2 is excellent, but fine-tuning your critical focus on a bright star at F/2 will take some trial and error to get right. You may need to refocus your subject as the temperature changes throughout the night. 

You may need to stop down to control star bloat, and that’s exactly what I’ve done with this 135. I’ve set the f-stop to F/2.8, to sharpen up the stars a bit. In fact, in my test shots, I noticed that the red channel was a little softer than green and blue. To remedy this, I reduced the star size in post, and I started shooting at F/4 to really tighten things up.

Also, as creative as the wide-field 135mm focal length is, it’s not practical for smaller DSO’s and most galaxies. Stick to Andromeda, and skip the Whirlpool.

I have heard others mention that this lens has a “plasticky” build quality, but I believe this aspect has been improved. The model I use feels solid and the barrel is constructed with metal.

The lens is not weather-sealed, so you definitely don’t want to leave your camera and lens (and your tracking mount!) in the rain. There’s no image stabilization on the Rokinon 135mm F/2 either, but that’s a non-issue for amateur astrophotographers. 

135mm lens

The North America Nebula captured using the 135mm lens with a clip-in Ha filter.

Recommend Astrophotography Targets for this Lens

Large emission nebulae like the California Nebula (pictured below) are a great choice for this focal length. The image below was captured using a DSLR and 135mm lens on the Sky-Watcher Star Adventurer mount. 

California Nebula at 135mm

The California Nebula. Canon EOS 60Da with the Rokinon 135mm F/2 lens.

I’ve captured a lot of deep-sky astrophotography targets from the northern hemisphere, but I’m usually in too deep to capture an entire region of space at once. Here is a short list of great astrophotography targets to shoot at 135mm with this lens:

  • Orion’s Belt (Including the Horsehead Nebula, Orion Nebula, and M78
  • The Witch Head Nebula including Rigel in Orion (Careful with star reflection!)
  • The Rosette Nebula and Surrounding Nebulosity
  • Cygnus, including the North America Nebula and Pelican Nebula
  • The Sadr Region in Cygnus including the Crescent Nebula
  • The California Nebula in Perseus
  • The Blue Horsehead Nebula in Scorpius
  • The Rho Ophiuchi Cloud Complex in the constellation Ophiuchus

Below, is an incredible example of the types of projects possible with the Rokinon 135mm F/2.0 lens. The following image was captured by Eric Cauble using the Samyang branded version of this lens. 

astrophotography example image

The Sadr Region in Cygnus, including the Crescent Nebula by Eric Cauble. 

Since Eric was so generous to share his images with me, I had to include his photo of the Rho Ophiuchi cloud complex as well. This photo was captured with the Samyang 135mm F/2 lens using a UV/IR cut filter and a QHY168C dedicated astronomy camera.

Rho Ophiuchi Cloud Complex

The Rho Ophiuchi Cloud Complex by Eric Cauble using the Samyang 135mm F/2 lens. See the full-size version on Astrobin

Final Thoughts

With an effective focal length of roughly 216mm when coupled with a Canon crop sensor body, the field of view is nearly identical to the one you’d find on a full-frame camera with a 200mm telephoto lens. That’s quite a jump from 135mm, so the camera body you use with this lens may change the types of targets you shoot. 

I can’t wait to try this lens out during the winter months on some wide-field targets in Orion. The colder temperatures will make DSLR astrophotography much more practical, and there are plenty of great targets to choose from.

During the frigid months of winter, my motivation to spend over an hour setting up my complete deep-sky imaging rig dwindles. However, stepping outside to polar align a small star tracker and attach a DSLR and lens is quick and painless. 

In these situations, a portable, wide-field imaging rig wins.

Star parties or dark sky excursions are another great time to use a camera lens in place of the telescope. Not only does it let you travel light, but impressive wide field projects are often more successful when captured under a dark sky. 

For those of you that like to “pixel-peep”, have a look at the single image frame captured using the Rokinon 135mm F/2.0 ED UMC at F/4. The image is a 90-second exposure at ISO 400 using a Canon EOS 60Da. The inset picture is a magnified view of the bottom right corner of the frame. 

star test

A single, 90-second exposure using the Rokinon 135mm F/2.0 ED UMC at F/4. 

I hope that this post has provided some practical insight into a popular camera lens for astrophotography. If experience has taught me anything, it’s that the practical, pain-free equipment that gets the most use under the stars. 

This lens is available on Amazon for most camera bodies. Make sure to select your camera mount when checking the price (Check current price). If you have pictures taken using the Rokinon 135mm F/2 lens, please feel free to share your results in the comments section (links to Astrobin, Flickr or your personal gallery are fine). 

List of Compatible Cameras (Mounts)

  • Canon
  • Sony E
  • Fuji X
  • Nikon AE
  • Samsung NX
  • Pentax K
  • Sony A
  • Micro 4/3

Complete Lens Specifications (Canon)

  • Model: 135M-C
  • MSRP: $599
  • UPC: 0-84438-76410-9
  • Focal Length: 135mm
  • Maximum Aperture: F2.0
  • Coverage: Full Frame (FX)
  • Optical Construction: 11 Glass elements in 7 Groups
  • Aperture Range: F2.0 to F22
  • Diaphragm Blades: 9
  • Coating: Ultra Multi-Coating
  • Minimum Focusing Distance: 2.6ft (0.8m)
  • Filter Size: 77mm
  • Lens Hood: Removable
  • Maximum Diameter: 3.2” (82mm)
  • Weight: 29.20oz (830g)
  • Length: 4.80” (122.1mm)

lens construction

Download the User Manual

Helpful Resources:

 

Related Tags

Using A Canon 300mm Lens for Astrophotography

|Nebulae|11 Comments

If you watched my video about Comet 46P Wirtanen, you may have noticed that my imaging gear included a Canon EF 300mm F/4L USM Lens. This may have seemed a little odd to those that are used to seeing me use a telescope for astrophotography, but a camera lens like this can be a great way to capture deep sky images.

Over the years, a lot of people have asked me why they should invest in a new telescope when they already own a high-quality telephoto camera lens with a comparable focal length. After all, a prime lens like the Canon EF 300mm F/4L isn’t cheap, and its got some seriously impressive optics.

So, if you’ve already got a lens like this in your kit, you should definitely try using it for astrophotography before investing in a new telescope.

Canon 300mm F/4L Lens for Astrophotography

Make no mistake, a telescope designed for deep sky astrophotography has many advantages in terms of deep sky astrophotography. Specialized features such as a robust dual speed focuser, light baffles, and the ability to easily accommodate astronomy cameras and autoguiding systems to name a few.

But if you’ve been into photography for a while, there’s a good chance you’ll already own some camera lenses that are perfect for astrophotography. The secret is, to leverage the tracking abilities of an equatorial mount that allows you to capture long exposure images of the night sky without star trailing.

In this post, I’ll show you how I managed to capture an impressive portrait of the Orion Nebula using a 300mm camera lens from my backyard in the city. I’ll discuss the filter I recommend, the camera settings I use, and the share the process of capturing long exposure images on a tracking mount.

Canon 300mm Prime Lens

My Canon EF 300mm F/4L USM Lens

Canon 300mm F/4L (Non IS)

The camera lens I am using is a first generation Canon EF 300mm F/4L (Non-IS). This is an old L-series lens from Canon that does not include Image Stabilization, but does include the ring type USM autofocus motor. Features like IS and autofocus won’t work for astrophotography, so older prime (non-zoom) lenses like this are a great value in the used market.

It’s quite useful to have prime lenses at different focal lengths in your astrophotography kit. You’ll be able to capture a wide variety of targets from large open star clusters to emission and reflection nebulae like Orion. (See my review of the Rokinon 135mm F/2 for even wider deep sky images).

Video: Deep Sky Astrophotography with a 300mm Camera Lens

I purchased my 300mm F/4L used, and drove a fair distance to meet the seller. The lens was originally intended for bird photography, which I still enjoy today with a 1.4 extender attached for more reach. The native focal length of 300mm and widest aperture are a better configuration for astrophotography purposes. 

The 1.4 x Canon teleconverter introduces chromatic aberration, and I lose a full stop of light (F/5.6).  This is not usually an issue in my daytime photography images, but it’s out of the question when photographing stars.

Using the Canon 300mm F/4L lens on a crop-sensor DSLR (APS-C) camera like my Rebel T3i will effectively create a narrower field of view than a full-frame camera does. This creates an equivalent focal length of 480mm with the crop factor applied (1.6X), which is important to consider when framing up an astrophotography target.

Using a simple FOV (field of view) calculator, you can get a preview of the expected image scale of your target. As you can see, the Canon 300mm F/4L and Canon EOS 600D combo frame the Orion Nebula and Running Man nicely.

camera lens FOV

The Field of View using a 300mm Camera Lens and APS-C Sensor DSLR

Most of the astrophotography telescopes I recommend for beginners hover around the 400mm to 700mm focal length mark, so this camera lens is quite comparable. Also, the Canon EF 300mm F/4L Non IS contains two UD (Ultra low dispersion) lens elements similar to the construction of an apochromatic refractor.

The rather fast optics of this lens (F/4) is advantageous for night photography, as its widest aperture will allow plenty of signal (light) to be collected in each shot. For comparison, my Sky-Watcher Esprit 100 APO has an F-Ratio of F/5.5.

When it comes to acquiring astrophotography data for a healthy signal to noise ratio, a camera lens with a fast aperture is recommended. This is why camera lenses like the Rokinon F/2.8 and Canon F/1.8 are excellent choices for astrophotography.

Focusing the lens

Finding a precise focus using a camera lens is much more difficult than it is with a telescope. Rather than using a smooth dual-speed micro focuser, you have the challenging task of using the rather sensitive focusing ring on the lens (in manual mode of course).

It’s best to point the camera towards a bright object (not a star) to find the initial focus. The Moon, or a distant streetlight will do. Once you have it dialed in using the lenses widest aperture (F/4), you can then aim the lens at a bright star in the night sky using your cameras highest ISO setting. 

From here, it’s a matter of trial and error until you find the sweet spot. Once you’ve found it, be very careful not to bump it out of focus when slewing to your target. You can always fine tune the focusing ring on your deep sky target using short test exposures after.

The Camera: Canon EOS Rebel T3i 

This Rebel T3i (600D) camera has been “modified” for astrophotography, which isn’t nearly as complicated or technical as it sounds. I’ve basically removed an internal filter that blocks certain wavelengths of light from being recorded on the sensor (I didn’t modify this 600D myself, it was done by a professional).

The stock internal IR cut filter found in DSLR cameras like the Canon Rebel T3i creates “normal” looking daytime images, but can hold your astro images back. If you own a DSLR camera that you want to use for astrophotography, look into getting it modded. I waited almost 4 years before making this upgrade, and it significantly improved my astrophotography images.

This modification will better showcase the rich areas of hydrogen gas in the Orion Nebula. For certain deep sky targets (such as the California Nebula) a full-spectrum modified DSLR is essential for a respectable image.

Canon EOS Rebel T3i DSLR

My Full Spectrum Modified Canon EOS Rebel T3i 

The Orion Nebula isn’t one of them! A stock DSLR camera can capture exquisite images of this reflection/emission nebula with beginner-level equipment.

To photograph Messier 42, I’ll shoot a series of 1.5-minute exposures at ISO 400. The images will collect a healthy amount of signal (or light) on this nebula and the surrounding area. With the temperature hovering around zero on the night of acquisition, I benefited from a cool camera sensor that didn’t produce nearly as much noise as I experience in the summer.

Covering the sensor is an Optolong L-Pro filter. This broad spectrum filter is an excellent choice if you are looking to produce natural looking astrophotography images in the city. Light pollution is a big problem for many amateur astrophotographers, and filters like the L-Pro can make your life easier.

This filter clips-into the camera body, and fits neatly underneath the camera lens. Being able to use this filter with either a camera lens or telescope attached is a real bonus. I have also used this filter underneath the Rokinon 14mm F/2.8 lens for some wide angle shots of the night sky from home. 

The Camera Mount: iOptron SkyGuider Pro

The iOptron SkyGuider Pro is the perfect solution for those looking to get started in astrophotography with a DSLR camera and lens. It’s a highly portable, non-nonsense astrophotography mount that allows you to start tracking the movement of the night sky for long exposure imaging.

With the counterweight attached, it can handle heavier lenses like this 300mm F/4L, and even a small telescope like the William Optics Z61.

For this mount to be effective, it must be accurately polar aligned. In the northern hemisphere, we have the advantage of being able to use the north star, Polaris, to help us align with the polar axis of the Earth.

iOptron SkyGuider Pro

The iOptron SkyGuider Pro Camera Mount

To start tracking, its a simple as turning the SkyGuider on, with the mode set to 1X sidereal rate. After that, the camera mount slowly matches the apparent rotation of the night sky, and my long exposure images record pin-point stars without trailing.

The SkyGuider pro includes an illuminated reticle that you can use as a guide to align the mount. This make it really easy to get your alignment just right – which is critically important for astrophotography. Polar alignment and balance will make the biggest impact on your images.

The farther off you are in either area (balance and polar alignment), the shorter your exposure times will need to be. With a sound polar alignment and a careful balance, unguided exposures of 3 minutes or more are no problem on the iOptron SkyGuider Pro mount.

Locating Objects with the SkyGuider Pro

To locate and frame a deep sky target using this mount, it must be done manually (no GoTo functionality). For bright targets like the Orion Nebula, this is extremely easy, as I can line up the target using the viewfinder on my DSLR camera. For faint targets, or when using a narrowband filter, you may need to take a number of test exposures to get it framed just right.

I personally have the SGP mounted to a lightweight carbon fiber tripod. This is a highly portable configuration, but it’s likely a little too flimsy for folks that want a rock-solid platform. Consider using a more robust aluminium tripod with this mount.

The Target: Orion Nebula

The bright moon certainly isn’t helping me capture the faint dusty details surrounding Orion. Luckily, M42 is such a bright deep sky object that it can be enjoyed in less than perfect conditions. I’ve photographed this target so many times, and it never gets old.

It’s a spectacular target to test new equipment on, because you are bound to get a rather impressive image no matter which approach you take. The light pollution filter used (Optolong L-Pro) did a great job of reducing the unwanted artificial light present in my backyard, allowing the natural star colors to shine through.

To create my final image, I’ve stacked the individual exposures together using a free software called DeepSkyStackerThe resulting was then brought into into Adobe Photoshop for further processing. If you want to learn how I process my astrophotography images, have a look at some of the image processing tutorials I’ve shared in the past.

Orion Nebula 300mm Camera Lens

The Orion Nebula captured using a Canon EF 300mm F/4L Lens (Click for larger version)

Image Details

  • ISO Setting: 400
  • Exposure Length: 90-seconds
  • Number of Exposures: 117
  • Total Overall Exposure: 2 Hours, 49 Minutes
  • Support Files: 15 Darks, 15 Flats, 15 Bias
  • Image Processing: DeepSyStacker, Adobe Photoshop

The Bottom Line

As you can see in my image above, the stars are sharp and free of chromatic aberration (color fringing). This is a testament to the high quality optics of the 300mm F/4L lens, and an important factor to consider when choosing a camera lens for astrophotography.

Capturing sharp, accurately colored stars is the ultimate challenge for optical equipment, and the Canon EF 300mm F/4L passes with flying colors. The field is also extremely flat, another trait of only the best camera lenses. 

A prime telephoto camera lens like the Canon EF 300mm F/4L is a great way to capture deep sky astrophotography images, as long as you’ve got a way to track the night sky for each shot. The wide field of view is very forgiving, meaning autoguiding isn’t necessary for a successful long exposure image.

Whether you’re using a camera lens, telescope, or a pair of binoculars. I hope you’re able to get out and appreciate the impossibly beautiful history of our universe that shines above our heads this season.

Until next time, clear skies.

Helpful Resources:

Astrophotography Cameras – What’s the Best Choice for Beginners?

Examples using a Canon EF 300mm F/L Non IS for astro imaging (Cloudy Nights)

How to Make a Bahtinov Mask for Your Camera Lens (Deep Sky Watch)

 

Related Tags

The Best Lens for Astrophotography (That You Probably Already Own)

|Camera|10 Comments

In my opinion, the best astrophotography lens is one that can capture a variety of images of the night sky in a reliable and consistent way. Not all camera lenses are created equal, and imaging a night sky full of pinpoint stars has a way of bringing out the worst (or best) of your lenses capabilities.

In the following post, I’ll share my experiences using 2 astonishingly affordable camera lenses for astrophotography. I shoot with both full-frame and APS-C sized sensor Canon DSLR’s, so the lenses are both made by Canon. The Canon EF 50mm F/1.8 STM, and the Rokinon 14mm F/2.8 wide-angle lens.

It’s not possible for me to recommend a single “best lens for astrophotography”, as that title will vary depending on who you ask. Consider this post to offer some real-world advice from someone who’s pointed several cameras and lenses towards the night sky over the past 8 years.

The Best Lens for Astrophotography (You May Already Own)

camera lens for astrophotography

The Canon EF 50mm F/1.8 Camera Lens and DSLR on a Tracking Mount

The truth is, when I look at similar reviews for astrophotography lenses, they tend to focus solely on Milky Way photography, and nightscapes. Unlike most reviewers, my long history in deep-sky astrophotography using a DSLR through a telescope has given me a unique perspective on this subject.

On a recent astrophotography session in the backyard, I discovered how enjoyable it can be to squeeze in a brief mid-week session using my camera lens in place of the telescope.

For this imaging run, I used the refreshingly simple and affordable Canon EF 50mm F/1.8 lens. The lens was attached to my Canon Rebel T3i DSLR, which rode atop an iOptron SkyTracker camera mount.

(Those of you that have been following my blog for some time know how much I love my DSLR astrophotography.)

The difference this time around is that I’m able to get up and running in about 10 minutes.  The lack of computer control and autoguiding saves a lot of time and effort – meaning I’m collecting data sooner.

Don’t believe me? Have a look at a recent shoot that took place on a less than perfect night.

A Budget Astrophotography Lens (Nifty Fifty)

The lens used in this video is often referred to as the “nifty fifty”. “Every photographer should own a 50mm f/1.8 lens as your first upgrade from the kit lens that came with your camera.”Improvephotography.com

In the video above, I set out to capture the Orion Constellation using a Lens in place of a telescope.  This is my “quick and dirty” imaging setup.

Using a Camera Lens instead of a Telescope

On nights when imaging time is limited, a great option is to set up a highly mobile setup that you can get up and running quickly. You do not need a telescope to enjoy astrophotography and capture many stunning deep sky objects in the night sky.

Related Post: 7 Astrophotography Tips and Camera Settings You Can Try Tonight.

Sure it would be great to capture light frames on a deep sky project using my primary imaging telescope, but that’s not always a practical choice in the middle of February. Setting up a DSLR camera and lens on a portable tracking mount is quick and painless – and I still get my astrophotography fix.

Setting up my camera mount

A small sky-tracker camera mount can be set up and polar aligned within minutes

The process of setting up my complete deep-sky telescope rig for a night of astrophotography takes time.

Even with a sound blueprint for setting up my non-permanent setup, the process can take upwards of an hour. This isn’t a problem on a warm Saturday in June, but a Monday night in February is an entirely different experience.

Another factor that went into consideration was the weather conditions for that particular night. The clear sky chart was less than ideal, with the transparency meter looking a little pale.

Rather than setting myself up for a potentially wasted night due to weather, I took a chance on some wide-field shots using my “spur of the moment” rig. If the clouds did end up rolling in, I could quickly pack everything back up into the garage in minutes.

A Lightweight, Portable Solution

wide-angle astrophotography setup

My Canon EOS Rebel T3i sitting atop the SkyTracker Pro Camera Mount

The iOptron SkyTracker Pro is a portable astrophotography mount that is perfect for taking wide-angle nightscape with a DSLR camera and lens. If you’re just getting into the hobby and interested in long exposure shots of the Milky Way – a star tracker mount like this what you want.

My target on this particular night was the Orion Constellation, including Barnard’s Loop. Using the Canon 50m lens with my T3i results in a focal length of 80mm (50mm x 1.6 crop factor), which happens to be a perfect fit when it comes to capturing the stars that make up Orion the hunter.

Canon astrophotography lens

The Canon EF 50mm F/1.8 Lens

What’s the Best Lens for Astrophotography on a budget?

You may remember my announcement on Facebook about investing in a new Rokinon 14mm F/2.8 lens. This “budget” category lens was purchased with the idea of wide-angle nightscapes in mind.

There are many great lenses for astrophotography available, but these are two that I personally own and enjoy. The models mentioned below are both prime lenses with a fixed focal length. Although they are both affordable choices for astrophotography, their uses will vary.

Jerry Lodriguss has put together a helpful list of both Canon, Nikon, Sigma and Rokinon Lenses for Astrophotography on his website.

best budget astrophotography lens

Left: Rokinon 14mm F/2.8  |   Right: Canon 50mm F/1.8

The lenses listed below are both built for a Canon DSLR body because that’s what I currently shoot with.  Nikon has comparable lenses (Nikkor) in this category, with similar models of the lenses mentioned below.

The Rokinon 14mm F/2.8

If you were to ask me for advice on “the best budget lens for astrophotography”, I’d lean toward the Rokinon 14mm Ultra Wide Lens if you plan on shooting wide-angle astro-landscapes.  Over the summer of 2018, I was able to capture some incredible images of the night sky with this lens.

Rokinon 14mm F/2.8 lens for Canon

The Rokinon 14mm F/2.8 Lens attached to my Canon DSLR

At 14mm, the Rokinon is a much better choice than the Canon 50mm if you plan to capture large areas of the night sky, including the Milky Way. With a full frame camera, the ultra-wide 14mm FOV can be fully appreciated.

Pros:

  • Ultra Wide-Angle (Especially using a full-frame DSLR)
  • Affordable
  • Fast Optics (F/2.8)

Cons:

  • Manual aperture adjustment
  • The manual focus ring is slow
  • Big and bulky objective lens

As the season changes, I’ll spend much more time with this astrophotography lens.  I am curious to see how much sky I can collect in some stacked long exposures.

Update: Summer 2018

I used the SkyTracker Pro mount and the Rokinon 14mm F/2.8 Lens to photograph the Milky Way under the dark skies of Cherry Springs State Park in June 2018. This portable astrophotography setup is absolutely perfect for wide-angle shots of the Milky Way.

The Milky Way

The Milky Way using the Rokinon 14mm F/2.8 Lens

If you’re want to go a step further and use a small telescope – I’ve had success using the beefier SkyGuider Pro. Wide-field nightscapes are a lot of fun – and can be just as rewarding as a deep sky image. The SkyTracker taps out after the weight of a DSLR camera and modest size lens.

The Canon EF 50mm F/1.8

This lens is about $150 brand new, is virtually weightless, and is useful focal length for wide field imaging on certain targets.  I purchased the Canon EF 50mm F/1.8 lens years ago, as it added a much need portrait lens to my DSLR kit at the time.

Canon EF 50mm F/1.8

With the aperture wide open at F/1.8, you can pull in a lot of light in a short period of time, but the stars are a little rough at the edges of the frame. If you stop down to F/2.8 or F/3.2 things improve dramatically.

Pros:

  • Extremely Affordable
  • Fast Optics (F/1.8)
  • Lightweight

Cons:

  • No Image Stabilization
  • Impractical Focal Length
  • Stars at F/1.8 aren’t great

examples using a 50mm lens

The images above were taken by Kurt Zeppetello and Victor Toth using the Canon 50mm F/1.8 lens on a tracking mount.

Camera Lens Focal Length Max Aperture Best F-Ratio to Use Best For Price
Rokinon 14mm F/2.8 14mm F/2.8 F/3.2 Wide Deep-Sky Check Amazon
Canon EF 50mm F/1.8 50mm F/1.8 F/3.2 The Milky Way Check Amazon

Using a Clip-in DSLR filter with a camera lens

To make life easier, I opted to use an h-alpha filter in the T3i to completely ignore the light pollution from home. The Astronomik 12nm Ha filter clips into my camera – and isolates the hydrogen gases found within the hunter.

I don’t recommend using a thread filter that screws on to the objective of your camera lens. It’s best to use a clip filter that clicks into the body of the DSLR underneath the lens, like the one shown below.

The clip-in style filters allow you to attach any EF mount-style lenses to your Canon camera. I recommend double checking to see if your lens is compatible with a particular clip filter before purchasing.

Clip-in DSLR filter

The Astronomik 12nm Ha Clip-In Filter used for my Narrowband image of Orion

The Orion Constellation at 50mm (in narrowband ha)

The following image is of a large portion of the night sky including the stars and nebulae surrounding Orion. I use the hydrogen-alpha clip filter in my camera on nights when the Moon is out, or I simply want to capture some dramatic details in a particular nebula.

The resulting narrowband image is, of course, black and white – with the red channel isolated in photoshop for processing. For more details on processing images in ha from a DSLR, have a look at my narrowband Photoshop tutorial.

Barnard's Loop in Orion

Barnard’s Loop in Orion | 26 x 3-minutes @ ISO 800

Overall, I am quite pleased with the way this turned out. The total exposure time was short, and the sky conditions were lousy. The focal length of the Canon EF 50mm lens was spot on for a constellation of this size.

The shots were 3 minutes each, at ISO 800.  I stopped the aperture down to F/3.2 to sharpen things up, not to mention not blow out my 3-minute subs. As you can see, the stars are still rather sharp at the very edge of the field.

stars at the edge of field

A sound polar alignment on the little iOptron SkyTracker was all I needed for sharp, pinpoint stars for each 180-second sub.  Can your telescope mount go 3 minutes unguided with sharp stars?

To polar align, I simply refer to my Polar Finder phone app and make the necessary adjustments to the mount.

At this focal length, autoguiding is not necessary and the field of view is quite wide and forgiving. With that being said, I am so impressed with the smooth and accurate tracking on the SkyTracker. A camera mount like this opens up new opportunities for night photography when using a camera lens for astrophotography.

Camera Automation and Focus

I  automate my imaging sessions on the SkyTracker mount using a remote shutter release cable that connects directly to the DSLR. With this device, I can set everything from the number of exposures to the individual exposure length.

A typical astrophotography imaging session will include 30 images of 90-seconds or more, with a 5-second delay between shots. It’s often said that using a delay can help let your camera sensor cool down a bit between shots. This will help reduce noise.

remote shutter release cable

My Polaroid  Remote Shutter Release Cable

The cheap Polaroid version I bought on Amazon has been surprisingly reliable. Using the remote, I let the camera do it’s thing until it’s time to tear down and go to bed.

The photo below showcases the constellation Cygnus and the Milky Way using my Canon T3i DSLR with the Rokinon 14mm F/2.8 Ultra wide angle lens. It’s a stacked shot of 23 x 2-minute exposures.

The Summer Triangle

The Summer Triangle and the Milky Way (Rokinon 14mm F/2.8)

The Best Lens for Canon DSLR’s

I would like to recommend the Canon EF 50mm F/1.8 STM and the Rokinon 14mm F/2.8 Ultra Wide Angle lenses for Canon cameras. These 2 lenses are tremendous choices for astrophotography because they are capable of letting in a lot of starlight in a single exposure.

The 50mm is a useful focal length for framing up a particular constellation like Orion, above. While the Rokinon 14mm lens is perfect for shooting the Milky Way. Both lenses can produce sharp results and impressive images when the correct settings and techniques are used.

The Canon EF 24-105mm F/4 lens has also been useful for certain projects. It’s a zoom lens, but the star quality is commendable at both 24mm and 105mm. When coupled with a crop-sensor DSLR, the full magnification of 105mm brings a new perspective to popular targets such as the Horsehead and Flame nebula in Orion.

iOptron SkyTracker Pro Camera Mount

Deep sky objects in Orion at 105mm (Canon EF 24-105mm F/4L lens)

For me – finding ways to sustain this hobby long term is important. This rather brief astrophotography session provided me with enough data to produce an impressive portrait of Barnard’s Loop, and the Orion constellation in hydrogen alpha.

The simplicity of mounting the camera on a small tracking mount and walking away really appeals to me.  On frigid February night, it’s a refreshing experience that doesn’t involve a lengthy star alignment routine or lugging 40 pounds of gear around.

Shooting deep sky through a telescope will always be my bread and butter, but shooting with a cheap astrophotography lens on a small star tracker sure is a lot of fun too.

Related Posts:

Astrophotography Cameras: The Best Choice for a Beginner

Light Pollution Filters for Astrophotography

Deep Sky Astrophotography with a 300mm Camera Lens

Related Tags