Skip to Content

Sky-Watcher EQ6-R Pro

My Best Images & The Gear Used

|Blog Updates|27 Comments

On this website, I do my best to share information and astrophotography tips that provide value. I could pat myself on the back about all of the great astrophotography images I took this year, but it is of little interest to anyone if I don’t explain how I took the shot. 

In this article, I’ll share my best astrophotography images of 2020, and the equipment setups used for each image. This way, you’ll have a better idea of what’s behind each image, and how you can accomplish a similar result yourself.

Capturing the images with the right set of gear is only half of the equation, of course. If you’re interested in learning how I process my deep-sky astrophotos, consider taking a look at my premium image processing guide

astrophotography equipment

The Gear Behind My Best Images of the Year

As you know, 2020 was a strange year. I spent a lot of time at home and took most of my astrophotography images from my light-polluted backyard (Bortle Scale Class 7) in the city. I tried to capture a mix of galaxies and nebulae this year using a number of different telescopes, cameras, and filters.

I’ve included links to the equipment used for each shot, from the filter to the telescope mount. You obviously don’t need to use the exact set of gear to replicate my results, but at least you’ll have a better idea of what to expect.

I have also included the software used to photograph the images with my laptop computer, and the post-processing software as well. 

For the absolute latest images, consider following AstroBackyard on Instagram and Facebook. For a behind-the-scenes look at how the images are created, you can also subscribe to my YouTube Channel

best astrophotography images

Messier 82: The Cigar Galaxy

  • Object Type: Irregular (Starburst) Galaxy
  • Imaging Style: Deep-Sky LRGB
  • Camera Type: Monochrome CCD

After a cloudy start to the year, I finally began my first serious astrophotography project in March. I have always wanted to photograph the Cigar Galaxy (Messier 82) with enough focal length to reveal the interesting structure of this irregular galaxy

In the past, I’ve collected light on this area of the night sky using a wider field-of-view (400mm-800mm). This allows you to create an image that features 2 distinct galaxy types in a single shot (Spiral and Irregular). 

Nearby Messier 81 always seems to get plenty of attention from the amateur astrophotography community, so I decided to give its neighbor some love. I don’t recommend photographing this galaxy on its own unless you’ve got at least 1000mm of focal length. 

Overall, I managed to collect 5 hours and 25 minutes of total integrated exposure time on this galaxy in Ursa Major. I am happy with the result (definitely my best yet), but I would have liked to capture more hydrogen-alpha data to really bring out the “fiery-looking plumes of glowing hydrogen blasting out of its central regions”. 

Messier 82 galaxy

The Cigar Galaxy in Ursa Major. 

This was an early project using the Starlight Xpress SX-42 (Trius 694 Mono) CCD camera, and I was still very new to building LRGB images in Adobe Photoshop. This camera features a 6.1 MP monochrome CCD sensor with 4.54-micron pixels. 

It is my first CCD camera, and it has provided me with some of the most incredible deep-sky images I have ever taken (including my APOD in June 2020)

Starlight Xpress Trius 694 Mono CCD

I now have an astrophotography rig better suited for photographing small galaxies (Celestron Edge HD 11), but the 6-inch refractor used for this photo is well-suited for medium-sized galaxies like M81 and M82.

Each and every exposure used for this image was 5-minutes long. 300-seconds seemed to be enough for the Ha, but I don’t think I’ll shoot my LRGB sub-exposures so long in the future.

Messier 51: The Whirlpool Galaxy

  • Object Type: Spiral Galaxy
  • Imaging Style: Deep-Sky LRGB
  • Camera Type: Monochrome CCD

Soon after completing my Cigar Galaxy photograph, I pointed my telescope towards the Whirlpool Galaxy in Canes Venatici. In the northern hemisphere, it’s an excellent project to take on in the springtime.

Again, I used my Astronomik LRGB filters and the Starlight Xpress monochrome CCD. With pleasing results on the Cigar Galaxy a month earlier, I decided to keep shooting 300-second sub-exposures on the Whirlpool Galaxy.

Unlike my image of Messier 81, I shot plenty of luminance data for this target (36 x 300-seconds). I believe this helped to keep the noise minimal, even after substantial stretching to the saturation and curves. 

M51 Whirlpool Galaxy

The Whirlpool Galaxy in Canes Venatici. 

The aperture of the Sky-Watcher Esprit 150 (6-inches) helps to resolve faint, detailed structures in galaxies like this. The Esprit 150 really is a dream telescope for refractor fans.

Sky-Watcher Esprit 150 APO

The Starlight Xpress filter wheel is an absolute pleasure to use with my Trius 694 mono CCD camera. After installing the ASCOM drivers on my laptop computer, I can connect to the filter wheel using Astro Photography Tool and can change filters quickly and reliably depending on the subject matter. 

It’s a 7-position wheel containing a complete set of Astronomik Luminance, Red, Green, Blue, 6nm H-Alpha, 6nm OIII, and 6nm SII 1.25″ filters. A filter wheel is a must if you plan on using a monochrome camera to build full-color images over time. 

NGC 2539: Thors Helmet

  • Object Type: Emission Nebula
  • Imaging Style: Deep-Sky Narrowband (HOO)
  • Camera Type: Monochrome CCD

Thor’s Helmet Nebula is a fascinating deep-sky target in Canis Major and an object that can be difficult to capture from the northern hemisphere. From my backyard, this nebula skims the trees and rooftops of the neighborhood, allowing only a short window of opportunity.

Until this photo, I had only attempted Thor’s Helmet once before, using a telescope with a short focal length (400mm). This time, I was able to get an up-close view of this dynamic emission nebula at 1050mm using the Sky-Watcher Esprit 150 APO refractor.

I photographed this nebula in HOO (Ha, OIII, OIII). This means that I mapped the hydrogen to red, and the oxygen to green and blue. For this subject, I think it creates a beautiful result. 

Thors Helmet

The Sky-Watcher EQ8-R Pro equatorial mount has been extremely reliable since it arrived in late 2019. This observatory-grade GoTo mount can handle a payload of up 75-pounds, yet handles like an EQ6-R Pro with an identical user-experience. 

This tracking mount has spent much of the year outside, with a Telegizmos 365 cover protecting it from the elements. It was so nice to have a deep-sky astrophotography rig already polar-aligned and ready to image when the weather allowed for it.

Sky-Watcher EQ8-R Pro

On clear nights, I will set up an additional rig (usually the more manageable Sky-Watcher EQ6-R Pro) to capture another deep-sky object at the same time.

NGC 6888: The Crescent Nebula

  • Object Type: Emission Nebula
  • Imaging Style: Multi-Bandpass Narrowband
  • Camera Type: DSLR/Mirrorless (one-shot-color)

The Crescent Nebula is an extremely popular deep-sky target for amateur astrophotographers, and for good reason. The problem is, it’s small. To capture a detailed portrait of this 25-light-year wide cosmic bubble, you need some serious reach. 

If you haven’t noticed a recurring theme in all of the images on this page up to this point, you should. Again, the incredible Sky-Watcher Esprit 150 Super APO refractor was used to create the image.

1050mm focal length is more than enough magnification for this object, but with a full-frame mirrorless sensor, you get some of the surrounding nebulosity too. 

Crescent Nebula

The Canon EOS Ra was my most-used camera of 2020, and it remains my favorite camera for astrophotography of all time. A full-frame modified sensor is something to treasure. The extremely user-friendly format of a mirrorless camera attached to the back of the telescope reminds me of how I got started in this hobby, and the joy it brings me.

Many people doubted my decision to purchase the Canon EOS Ra, and the critiques claimed it was overpriced. After nearly 30 image projects completed with this camera, I can safely recommend it to anyone looking for a reliable all-around astrophotography camera. 

Canon EOS Ra

The Radian Triad Ultra quadband filter is an incredible fit for the Canon EOS Ra, and this was the filter I used for 90% of my deep-sky shots using this configuration. 

It can be difficult to showcase the faint shell of oxygen surrounding the Crescent Nebula, and for this, I needed a little help. I applied a 25% layer of OIII data using my monochrome CCD camera to the image to really make that outer shell ‘pop’.

Comet NEOWISE

  • Object Type: Solar System (Comet)
  • Imaging Style: Broadband Wide-Field
  • Camera Type: DSLR/Mirrorless (one-shot-color)

Photographing Comet NEOWISE was an unforgettable experience. The tail of this evaporating iceberg in space was long and beautiful. 

There were thousands of images of Comet NEOWISE taken in July 2020, and some of them were remarkable. I did my best to capture this memorable scene from my backyard using basic equipment.

Comet photography is quite different from traditional deep-sky photography, although there are a few best practices that came in handy. I used my Rokinon 135mm F/2 lens and DSLR to photograph this comet on July 17th, 2020. 

Comet NEOWISE

The best part about photographing this comet was that it did not require an expensive deep-sky imaging rig. A portable star tracker and camera lens worked perfectly to capture this long icy snowball in the sky. 

The Sky-Watcher Star Adventurer is a dependable, battery-powered, ultra-portable star tracker that can handle up to 11-pounds of gear. I’ve used this little EQ mount with everything from a DSLR and 50mm lens, to a Radian Raptor 61 APO. 

Sky-Watcher Star Adventurer 2i

You may be wondering why the comet is lying on its side in this image when most photos show it pointing downward. The silhouetted treeline at the bottom of the photo is actually the side of my neighbor’s tree, and I rotated the frame to capture the Comet lengthwise.

The position and timing of the comet made photographing this celestial event a challenge. It sat rather low in the sky, and there was a limited window of time to capture it in the early morning, or just after dusk. There are many things I would change if I could photograph Comet NEOWISE again, but I will have to wait until it returns to Earth in 8,786.

  • Total Exposure Time: 7 Minutes
  • Details: 32 x 14-seconds
  • Camera: Canon EOS 60Da
  • Telescope/Lens: Rokinon 135mm F/2
  • Filter: None
  • Mount: Sky-Watcher Star Adventurer
  • Guide Scope: None
  • Guide Camera: None
  • Acquisition: Remote Shutter Release Cable
  • Integration/Calibration: DeepSkyStacker
  • Processing: Adobe Photoshop 2020

The Planet Mars

  • Object Type: Solar System (Planet)
  • Imaging Style: RGB 
  • Camera Type: Monochrome CMOS 

The Mars Opposition was another amazing celestial event that seemed to further ignite interest in astronomy in 2020. On October 13th, 2020, Mars was at its closest to Earth, and I photographed the planet shortly before this date.

Up until this year, my best photos of Mars were tiny, blurry orange orbs in the sky. I had never captured any interesting details of the planet’s rocky surface before. 

This type of astrophotography requires different acquisition software and a completely different post-processing routine as well. The results were incredible, considering I still have much to learn.

Planet Mars

High magnification planetary imaging is still quite foreign to me, although I have been photographing planets for quite some time. This time, I used a large SCT (Celestron Edge HD 11) and a dedicated astronomy camera that excels in planetary photography.

Celestron Edge HD 11

The most difficult part of the process was painstakingly removing and replacing each RGB filter in front of the camera (and re-focusing each time) to create a full-color image with my monochrome camera. This is exactly why filter wheels exist, I just did not own one at the time. 

The process becomes even more challenging as the planet slowly rotates (some, faster than others), and you realize that the rotation has created a mismatch in terms of surface details from one color to the next. 

NG 6960: The Western Veil Nebula

  • Object Type: Supernova Remnant
  • Imaging Style: Multi-Bandpass Narrowband
  • Camera Type: Dedicated Astronomy Camera (one-shot-color CMOS)

I took several photos with the versatile QHY268C one-shot-color astronomy camera in 2020. It was difficult to choose a favorite, as they all ended up being my best versions of each object to date. 

The Veil Nebula looked especially beautiful when captured with this camera, and I photographed it from every angle possible. The Optolong L-eXtreme filter was made for this target, and I was thrilled with my results using this combo.

The separation between the hydrogen and oxygen gases of this nebula from a light-polluted sky was impressive. If you’ve ever photographed the Veil Nebula using a broad spectrum filter, you’ll know that it can easily get buried underneath a sea of stars.

Western Veil Nebula

The sensor size of the QHY268C is APS-C (crop-sensor), which is quite large in the world of dedicated one-shot-color astronomy cameras. I thoroughly appreciated the field of view this sensor captured, in stunning high-resolution detail.

Although many of my best images of the year were captured using a monochrome camera, one-shot-color cameras continue to be a practical way to complete an image with limited time. In the case of the QHY268C, the image quality doesn’t have to suffer, either.

QHY268C Camera

Messier 31: The Andromeda Galaxy

  • Object Type: Spiral Galaxy
  • Imaging Style: Broadband RGB 
  • Camera Type: DSLR/Mirrorless (one-shot-color)

I rented an Airbnb under Bortle Scale Class 4 skies to photograph the Andromeda Galaxy in October 2020. This sensational broadband galaxy often looks best when photographed without the use of filters. 

Unlike most other galaxies, Andromeda is very large, and you may be surprised to find out that your current camera and telescope configuration will not fit the entire galaxy in a single frame. 

Andromeda Galaxy

This is one of the many sensational images captured using the Radian Raptor 61 apochromatic refractor telescope. This shows off the massive field of view provided at 275mm focal length. The conditions were far from ideal that night, but I am happy with how the photo turned out nevertheless. 

apochromatic refractor telescope

I used my portable Sky-Watcher EQ6-R Pro GoTo equatorial mount for this photo and took advantage of the autoguiding feature of the mount. The entire imaging rig was very manageable, and one that I will certainly bring on more adventures away from home in the future. 

As for the processing, I have shared an Andromeda Galaxy image processing tutorial in the past, and those techniques are largely unchanged today. 

The Milky Way 

  • Object Type: Milky Way Photography
  • Imaging Style: Wide-Field Nightscape
  • Camera Type: DSLR/Mirrorless (one-shot-color)

This photo was taken on a rare adventure away from home in 2020. My wife Ashley and I rented an Airbnb under Bortle Scale Class 3 skies during new moon. The night sky was jaw-droppingly gorgeous from this location.  

The core of the Milky Way was obscured by trees, but there was a large opening to the sky straight overhead on the property. Luckily, the timing was perfect as Cygnus and Cepheus are full of beautiful nebulae regions. 

The Milky Way

For this photo, I used my Canon EOS Ra mirrorless camera with a Sigma 24mm F/1.4 lens attached. This is a spectacular lens for astrophotography, particularly nightscape images like this.  Sigma 24mm F/1.4

I compensated for the apparent motion of the night sky using a Sky-Watcher Star Adventurer 2i star tracker. This portable rig is so easy to set up and record wide swaths of the night sky. It is hands-down the best Milky Way Photography setup I’ve ever owned.  

I used a different stacking software for this shot, one that is more suitable for landscape astrophotography. Sequator is a simple-to-use software that does a great job of reducing noise in your image to provide an impressive file to process.

  • Total Exposure Time: 14 Minutes
  • Details: 9 x 90-seconds at ISO 3200
  • Camera: Canon EOS Ra
  • Telescope/Lens: Sigma 24mm F/1.4
  • Filter: None
  • Mount: Sky-Watcher Star Adventurer
  • Guide Scope: None
  • Guide Camera: None
  • Acquisition: Remote Shutter Release Cable
  • Integration/Calibration: Sequator
  • Processing: Adobe Photoshop 2020

NGC 7293: The Helix Nebula

  • Object Type: Planetary Nebula
  • Imaging Style: Multi-Bandpass Narrowband
  • Camera Type: Dedicated Astronomy Camera (one-shot-color CMOS)

The Helix Nebula is one of those deep-sky objects that remind you of why you got into astrophotography. Its iconic shape and bold colors can spark a passion for astronomy and space like few other objects can.

I photographed the Helix Nebula on several occasions in the summer of 2020, yet still didn’t manage to collect enough exposure time to truly do this object justice. This image is not technically amazing by any stretch, but it is still one of the most exciting photos I took all year. 

For this image, I took advantage of the amazing Optolong L-eXtreme filter and QHY268C color camera once more.

Helix Nebula

To achieve these colors, I had to do some selective stretching and color balancing. The outer rim of hydrogen in red/orange is pretty standard, but in my data, I had to pull the greenish/blue area in the center way up. 

The central region of this nebula was much more greenish in the “out-of-the-camera” image. The Optolong L-eXtreme does a great job of separating the important wavelengths of light associated with some of the most popular nebulae in the sky.

Optolong L-eXtreme Filter

This is quite a small target, so plenty of aperture and focal length is needed to really get a good look at the Helix Nebula. 

Final Thoughts

This was hands-down the busiest year of astrophotography I’ve ever had. There were a lot of sleepless nights, numb fingers, and long image processing sessions. My reward? The images in this article, and the countless memorable nights under a clear night sky.

I hope you have gotten some value out of the descriptions of these images, so you can tackle the job yourself. Of course, you do not need to use the exact configuration I did to achieve these results, but at least you will have a benchmark to start from. 

If you have any questions about the astrophotography equipment discussed in this article, please feel free to let me know in the comments. Until next year, clear skies!

best astrophotography images

Related Tags

Astrophotography Gear Update

|Blog Updates|10 Comments

Despite the excitement of a moving into a new house under Bortle Class 6 skies, I’ve had a rough start to the new year in terms of astrophotography.

The weather has not been friendly, from -30 C nights to consecutive weeks of precipitation and clouds. However, this has given me some time to get my astrophotography gear organized in the garage for my next imaging session. My weather app shows that Saturday has a chance of clear skies for about 2 hours, and I’ll be ready.

In this post, I’ll provide an update as to the astrophotography gear I’ll be using next. My goal is that you find some inspiration in this setup, and to keep you guys up to date with the latest happenings in the AstroBackyard. 

You can also stay completely up-to-date by subscribing to my newsletter: AstroBackyard Newsletter

deep sky astrophotography setup

Astrophotography Gear Update

As you progress in your journey of deep sky astrophotography, I think you’ll find that you gravitate towards equipment that delivers a painless and enjoyable experience. To me, this hobby is about more than just aperture and guiding accuracy. Yes, improving the quality of my images is very important, but its the road to get there that I think I enjoy most.

If you have been paying attention to the AstroBackyard YouTube Channel, it may appear as if I am collecting all of the latest and greatest gear to bring to show-and-tell. The truth is, if I don’t actually get a chance to use and share my experiences with these items, it’s of little value to the amateur astrophotography community.

We’re half way through the month of February, and I’ve got a staggering amount of exciting telescopes, mounts and accessories on loan for review. I’ll share more information about these products over the coming months, as I continue to educate myself about them and their intended purpose.

This post will focus on a deep sky astrophotography rig that I have set up in a semi-permanent fashion. This means that I can quickly set up this rig for some deep sky imaging if the weather provides an opening through the clouds. I do not own a permanent observatory, so everything needs to be carried from my garage to a spot in the yard.

This rig has been commissioned into action for this month based on the current temperatures and weather conditions I’ve been experiencing. Options such as a larger mount or telescope are reserved for more accommodating temperatures and predictable conditions.

Here is each piece of the deep sky astrophotography setup I have put together:

As you can see, there are some familiar faces on this setup. There are also some exciting new additions such as the Meade Deep Sky Imager IV and Xagyl Filter Wheel. I have never captured images using a filter wheel before, so this should be an eye-opening experience. 

Another noticeable change from my last  deep sky setup is the use of a monochrome astronomy camera in place of the OSC (One-Shot-Color) ZWO ASI294MC Pro. The Meade DSI IV uses the same camera sensor found in the incredibly popular ZWO ASI1600MM, the camera behind countless jaw-dropping images from Chuck Ayoub, Dylan O’Donnell, and Diego Colonello.

Let’s take a look at each piece of the rig in detail. 

Telescope Mount

The Sky-Watcher EQ6-R has been an absolute pleasure to use since it arrived in the fall of 2018 from Sky-Watcher. This computerized equatorial telescope mount is reliable and capable. The EQ6 model has been refined over the years, a big improvement over my old HEQ5 Pro SynScan in terms of build quality, technology and features.

It is a step up from the HEQ5 in terms of payload capacity as well, offering a commendable 44-pound payload. This is more than enough for most of the telescopes I use for astrophotography, including the Explore Scientific ED 102 CF refractor that’s currently riding on top.

Computerized Telescope Mount

Sky-Watcher EQ6-R Pro Computerized Equatorial Telescope Mount.

I have yet to control the EQ6-R via my computer, tasks such as star-alignment and object slewing have all been accomplished using the hand controller thus far. While browsing the Cloudy Nights forum, I discovered an incredibly helpful article by John Upton about controlling SynScan telescope mounts from your computer.

The Sky-Watcher EQ6-R I have has the new Version 5 SynScan hand controller with the USB A-Male to B Male (Printer Cable) on the bottom. This does not require the use of the PC Direct Mode when controlling the mount using Astro Photography Tool (APT).

Long story short, I plan to leverage the power of ASCOM and PC control to further automate this setup over the coming months.

Primary Imaging Telescope

Ah, the Explore Scientific ED 102 CF. My reliable 102 is beginning to rival the number of imaging hours I put on the 80mm version of this triplet years ago. 

The ED 102 has a practical focal length and ratio for most of the deep sky targets I am interested in capturing (714mm and F/7). The 102mm diameter gives it enough aperture to give it some extra light gathering power for faint nebulae and galaxies over a smaller refractor, yet it is still very lightweight and easy to manage.

Explore Scientific ED 102 Refractor Telescope

Explore Scientific ED 102 CF Triplet Apochromatic Refractor.

I have taken countless images through the ED 102, but collecting light on deep sky targets in monochrome with a filter wheel is all new territory. 

The reason I have chosen to enlist the old ED 102 instead of the Esprit 100 or William Optics Z73 is the modifications I have made to it. I have fitted a motorized focuser and focus motor controller box to this refractor to help me fine tune my focus on the fly. 

I have photographed many incredible deep sky objects with this telescope over the past 3 years and highly recommend it to anyone looking for a high performance imaging APO for astrophotography.

Primary Imaging Camera

The Meade DSI IV is a rather new dedicated astronomy camera in the amateur astrophotography world, and there is not a lot of information about it yet. Ontario Telescope and Accessories saw an opportunity for me to share information about this camera and dive into monochrome LRGB imaging.

When I learned that the Meade DSI IV mono houses the same sensor as the ASI 1600MM, I immediately agreed to this arrangement. The Meade DSI IV mono marks as a return to the dedicated astronomy camera market by Meade, and I have high hopes for this 4/3″ format 16 Megapixel CMOS sensor.

dedicated astronomy camera

Meade Deep Sky Imager IV Mono CMOS Camera.

The thermo-electric cooler will ensure that my images are virtually noise free when compared to the images I capture on a DSLR. This camera requires an external AC power adapter to run the cooling system, and connects to my PC using a USB 3.0 cable.

I have installed all of the necessary software to run this camera using APT on my imaging laptop, and have tested everything out to make sure the images are recorded properly. I will not be using the included SkyCapture camera control software that was bundled with the camera.

Reducer/Flattener

I have always used a field flattener and reducer with the ES ED102 Triplet to maintain a flat imaging field of stars in my images. The Starfield 0.8X reducer/flattener is a perfect match for this telescope as it was designed for imaging refractors of F/5.5 and above. 

This flattener requires 55mm of back focus, which I have achieved between the camera sensor on the Meade DSI IV and back of the flattener. The required distance was accomplished by using a t-mount adapter ring to thread the camera to the Xagyl filter wheel.

Threaded to the reducer/flattener, is an Optolong L-Pro light pollution filter. This 2-inch filter sits in front of the LRGB filter set residing inside of the electronic filter wheel (EFW). So, each colored filter in the EFW (and the luminance filter), will benefit from a a subtle reduction in the amount of artificial light pollution collected when imaging in the backyard.

This is a bit of an experiment, so I plan on imaging without this filter in the future to compare results.

Guide Scope

The autoguiding telescope is a Starfield 50mm guide scope. This miniature refractor telescope has a focal length of 190mm, and serves as a lightweight solution for autoguiding. I have used this guide scope on a few rigs now, and I enjoy the precision of the helical micro-focuser.

I’ve mounted the guide scope to the cradle ring handle of the ED 102, as there is a convenient slot to mount accessories using  1/4″ screws. This is better position than the default finder scope bracket that I have used in the past. The autoguiding combo now sits directly center over the primary imaging scope.

This mounting position also allows me to use a finder scope with the ED 102 and autoguiding combo attached, which is nice to have for my 3-star alignment procedure. Both the guide scope and finder scope add very little extra weight to this setup.

astrophotography telescope

Starfield 50mm Guide Scope Package with Altair GPCAM2.

Guide Camera

The camera I am using on this setup is my well used Altair Astro GPCAM2 Mono. This camera is sensitive enough to provide accurate autoguiding results using the PHD2 Guiding software, and has proven to be a dependable little camera over the past 2 years. 

Its low profile takes up very little space on the telescope and is virtually weightless. This autoguiding combo is a painless way to add some seriously powerful tracking abilities of your existing telescope mount without adding a heavy telescope or unneeded complexity to your setup.

The camera connects to to my USB hub with a USB A Male to B Male cable to display the live loop images on my PC, while the ST-4 cable communicates subtle commands to the EQ6-R for improved tacking accuracy via PHD. 

autoguiding

The Altair GPCAM2 Mono Guide Camera.

Filter Wheel

This a new experience for me, and I am still getting used to seeing a big black plate in front of the camera. This is a Xagyl 5-position filter wheel with 48mm slots certainly requires some space, but this Xagyl model is only 0.7″ thick. 

I’ve moved the imaging payload around with everything attached and balanced, and it appears as though I won’t have to worry about the filter wheel crashing into anything. I will certainly keep an eye on things, though.

With the included adapter from Xagyl, the filter wheel added an additional 19mm of back focus which I needed to account for when fastening the camera and flattener.

The filter wheel connects to my USB hub with a mini-USB cable, and thankfully does not require another power source and additional cord to my setup. 

electronic filter wheel

Xagyl 5-Position x 2″ Electronic Filter Wheel.

Camera Filters

The team at Optolong has provided me with a complete set of Optolong LRGB filters to use in conjunction with this monochrome camera. This is my first foray into the world of LRGB imaging with a monochrome camera, as I have never owned a filter wheel to automate the process.

These filters are the 2-inch (48mm) round mounted versions that I have carefully threaded into the Xagyl 5-position filter wheel. I have tested the selection of each filter using APT and everything appears to be working flawlessly thus far. 

The images I take through the Optolong filters will showcase not only the potential of the Meade DSI IV mono, but the LRGB filter set as well. Unfortunately, I have nothing to compare them too, but I will produce a full-color deep sky image with this system so you can make an informed decision for yourself.

Optolong LRGB filter set

Motorized Focuser and Controller

I installed a Pegasus Astro Motorized Focuser on my telescope in late 2017. Since then I have enjoyed the added functionality of my ED 102, which comes in really handy when monitoring my gear outside remotely. I used to have to run outside to make a small tweak to my focus, which would often result in a lengthy back and forth process.

Now, I can make fine adjustments to the focus on the fly using a combination of Team Viewer for remote access of my imaging laptop, and the focus control panel in APT. As the temperature changes throughout the night, I often need to tweak my original focus position from the start of my imaging session. 

Motorized focuser

Pegasus Astro Stepper Motor Kit and Dual Focus Motor Controller.

I simply observe any changes to the star sharpness and quality over the last few images, and make any slight adjustments as needed in between frames using the Pegasus Dual Motor Focus Controller (DMFC). APT provides useful HFD and FWHM metrics to measure the focus quality of your stars.

I have not experienced the autofocus feature in APT yet, but plan to investigate this further this year. 

Accessories

My favorite astrophotography accessory of this setup has to be the Pegasus Astro Pocket Power Box. If you remember my video from last year, this little blue box allows me to better organize and balance my deep sky imaging rig by connecting almost everything on top of the telescope. 

It powers my primary imaging camera, DFMC, and 2 dew heater straps. This not only cuts down on the number of cables running from my power bar and computer to the telescope, but also allows me to control the output of each port remotely using dedicated software from my PC.

Pocket Power Box

The Pegasus Astro Pocket Power Box.

I’ve also mounted an Anker USB 3.0 7-Port hub to the eyepiece tray spreader underneath the EQ6-R mount head. This gives me all of the USB ports I need for my astrophotography cameras and accessories.

I no longer recommend using this USB Hub. It has given me some trouble lately, potentially due to the cold weather. I have since upgraded to a StarTech 7-port USB Hub.

What  I have plugged into the StarTech 7-Port USB Hub:

  1. Meade DSI IV Mono Imaging Camera
  2. Altair GPCAM2 Guide Camera
  3. Pegasus Astro Pocket Power Box
  4. Xagyl 5-Position Filter Wheel
  5. QHY PoleMaster Electronic Polar Scope

With all of the cables carefully run down from the telescope into the 7-Port hub underneath, I only need to connect a single USB 3.0 cable to my imaging laptop. I ordered a nice 9-foot A-Male to B Male USB 3.0 cable for this connection to give me some flexibility when setting up. 

The computer I use for deep sky imaging is a portable laptop I purchased on Amazon last summer. This computer has all of the necessary software for astrophotography image acquisition installed such as APT, PHD2 Guiding, and the Pegasus Astro software for the Pocket Power Box (PPB), and DMFC.  

To combat moisture on the objective lens of my primary imaging telescope and guide scope, I use Kendrick dew heater bands that are powered by the PPB.

The Bottom Line

Cable management was a top priority of mine, as the goal is to be able to control this mount remotely from inside the house when it gets too cold to be out all night. I’ve used over 25 Velcro ties to bundle up the cables as neatly as possible to avoid potential cables snags. Some soft tubing to completely conceal this cables might look best, but I’ll monitor how things operate like this first.

The entire imaging payload is balanced perfectly on top of the Sky-Watcher EQ6-R in both axis. I’ve pointed the telescope in almost every possible position, and nothing catches or strikes the tripod. I still do not feel comfortable slewing to a new target remotely (nor do I have the PC connection set up yet), so for now that operation will only take place when I am sitting next to the rig. 

The most important aspect of this rig are the automation and portability qualities. What I mean by that is, I can quickly carry this rig out of the garage to set up and image on a night with a limited amount of clear sky time. Without the counterweights attached, I am able to lift the entire load up and place it in the yard without having to re-assemble it. 

If the telescope were larger and heavier, I wouldn’t be able to do this safely without sacrificing my back or the chance of dropping something. 

Once I set up the tripod and polar align the mount, I can perform a quick 2-star alignment and slew to my target. Once I am locked on and framed properly, I’ll head inside the house to monitor the imaging session using Team Viewer to access my laptop outside.

From here, I can make slight adjustments to focus and take images through each LRGB filter. I expect I’ll need a window of at least 3 clear hours to produce a color deep image using this system.

Now, if I could just decide on a target…

What’s Next?

You may have noticed the absence of some existing new astrophotography gear I have talked about over the past couple of months. Namely the ZWO ASIair WiFi camera control unit and the Celestron CGX-L telescope mount. 

Both of these products will be used in the near future as the weather improves and I can dedicate longer periods of time under the night sky. The plan is to use the ASIair on the Celestron CGX-L, with the new Celestron 8″ RASA attached.

I’ve got a few other new products to share as well, so I hope you stick around to see them over the coming months. Until next time, clear skies.

Related Tags