Skip to Content

equipment

Sky-Watcher EQ8-R Pro (First Impressions)

|Equipment|13 Comments

A few weeks ago, I was lucky enough to receive a very large package in the mail, the Sky-Watcher EQ8-R Pro. Some people get excited about the arrival of flowers or perhaps a new book from Amazon at their door.

Me? I prefer over 100 pounds of deep-sky astrophotography equipment.

The brand new EQ8-R Pro is an observatory-class equatorial telescope mount capable of handing advanced astrophotography equipment, and one of the heaviest objects I have ever attempted to lift on my own. I’d like to think that deadlifting the heaviest of astronomy equipment is something I’ll always be able to do, but that is sadly not true.

astrophotography images using the EQ8-R Pro mount

The images I’ve captured using the EQ8-R Pro thus far.

I believe that most folks interested in an equatorial mount with this level of competence will be installing it in a permanent backyard observatory. As many of you know, I continue to haul all of my astrophotography in and out of the garage each and every time I set up.

Before I share any more down-to-earth amateur astrophotographer problems with you, I feel that it is important to let you know exactly how and why an unreleased Sky-Watcher EQ8-R Pro computerized GoTo mount was delivered to me.

Why I Do I Have One?

The team at Sky-Watcher wanted someone to review the EQ8-R Pro mount in a “real world” situation, and my light-polluted backyard in the city fit the bill quite nicely. To be quite honest, I did not have a need for a computerized GoTo telescope mount this large, but I am always happy to try out new equipment to better understand this hobby overall.

I have developed a great relationship with Sky-Watcher USA over the past year, and feel very comfortable demoing new products on my YouTube channel and website. This would not be the case if there were strict guidelines about what I can, or can’t say about the equipment, and I am happy to report, that there aren’t!

Despite what others have said in the forums, I have not “sold out” (a recent Cloudy Nights forum thread attacked my integrity), and earning my income by convincing someone to purchase a product or service I don’t believe in is exactly the type of scenario I removed from my life the moment I took on AstroBackyard full-time. 

Sky-Watcher

Sorry for the mini-rant, but I felt that this was important to mention moving forward. There’s bound to be skeptics in all disciplines, but the cost and potential frustrations involved with astrophotography gear can either bring out the best, or worst of us. 

To make things even more interesting, I’ve mounted a Sky-Watcher Esprit 150 Apochromatic Refractor and Starlight Xpress monochrome camera to the EQ8-R Pro. Sky-Watcher offers this imaging configuration as a package, and I believe you could call this one a “backyard astrophotographers dream”. I think now is great time to remind you that my time with this setup is limited.

As with all of the equipment I review on AstroBackyard and on YouTube, I was not paid to endorse this product, and it will be returned to the company after my review. While this “dream setup” is available to me, you can bet your biscuit I am going to spend every second of clear sky collecting photons with it. 

equatorial telescope mount

The Sky-Watcher EQ8-R EQ can handle 110-pounds of equipment.  

The Sky-Watcher EQ8-R Pro 

The Sky-Watcher EQ8-R Pro (and Rh versions) officially launched on October 18th, 2019, almost exactly a year after I received my EQ6-R Pro (this mounts younger sibling). This robust equatorial telescope mount boasts an impressive 50 Kg (110-pound) maximum payload capacity, a belt-drive system on both axes, an integrated cable management system, and more. Despite these useful traits and advanced features, I like to think of the EQ8-R Pro as a big, black EQ6-R Pro, and that’s a good thing. 

After nearly a year of use and countless astrophotography images later, I reviewed the Sky-Watcher EQ6-R Pro. I had a wonderful experience with this mount, and judging from the comments I received on this blog and social media, others did too. 

I am a big fan of the Sky-Watcher SynScan system, as I regularly still use and enjoy the hand controller on my astrophotography mounts. I’ve used the Celestron NexStar and iOptron Go2Nova hand controllers in the past, but I am most comfortable with Sky-Watcher mounts thanks to over 5 years of experience using them (starting with the Sky-Watcher HEQ5 in 2014).

hand controller

The Auto Slew Home command appears when you turn the EQ8-R Pro on. 

First Impressions

It was refreshingly simple and straight forward to get the EQ8-R Pro aligned and tracking my desired astrophotography subjects. With a careful polar alignment using the QHY PoleMaster, a 1-star alignment was all I needed to center my target using a telescope with a 1000mm+ focal length. Astonishingly, I’ve actually kept and stacked every single exposure taken on the EQ8-R Pro mount since it’s been in the backyard.

I used Astro Photography Tool to automate my imaging sequence with the Starlight Xpress SX42 camera and utilized the autoguiding port on the EQ8-R Pro for accurate 5-minute exposures. The Starlight Xpress filter wheel contained 6nm Astronomik narrowband filters, Ha, OIII, and SII. I am certainly not used to capturing images at a focal length of 1000mm, so I couldn’t help but get a closer look at some of the nebulae I’ve had a hard time reaching with my wide-field setups. 

Here is an image of the Bubble Nebula captured using the Esprit 150 refractor of the EQ8-R Pro:

Bubble Nebula

The mount slews and tracks very quietly. In fact, the EQ8R-Pro is as quiet (if not quieter) than the EQ6-R Pro. Compare this to the notoriously loud Celestron CGX-L. This is certainly not a primary reason to invest in a mount, but you’d be surprised at how much this aspect matters to you when switching targets at 2am on a weeknight. 

PHD2 Guiding Graph

The judge of an astrophotography mounts tracking performance is often in the PHD2 guiding graph. I feel that it is very important to mention that the total RMS error should not be viewed as the be-all-end-all judge of the mounts tracking abilities. There are many variables that come into play here, including the settings you are using in PHD2, seeing conditions, and a lot more.

With that being said, here is a recent look at the graph I was seeing with the Sky-Watcher EQ8-R Pro during a night of imaging. This was using the On-Camera guiding setting on the Lodestar X2. I would expect pulse guiding through a direct connection between the mount and PC to be even better. 

PHD2 Guiding Graph

Practicality

The mount is extremely heavy, the EQ mount head itself (56 pounds), and especially the matching pier tripod (64 pounds). It is impossible to safely lift the tripod and equatorial mount together as a single unit. Seriously, don’t even try.

This weight makes for a rather lengthy setup routine if you are carrying the EQ8-R Pro to and from the house or garage to your yard. The tripod is not only heavy, but awkward to manage over large areas. If you have a bad back, investing in a permanent setup or buggy-style transportation device is your only option. 

Sky-Watcher EQ8-R Pro Telescope Mount

The built-in heavy-duty handles on the mount make transporting the mount head to the tripod much easier, and they actually make carrying the EQ8-R a bit easier than some of the lighter, yet more awkward mounts. In contrast, the CGX-L has a single handle, that puts your one-arm strength to the test. 

The built-in power, auxiliary, and USB 3.0 ports are extremely useful when running advanced astrophotography setups that include multiple cables running down the mount. Setups that include a cooled astronomy camera, motorized focuser, filter wheel, and guide camera will appreciate this feature the most. 

cable management

Integrated Cable Management System.

Polar Alignment

One major difference between this mount and the smaller EQ6-R is the lack of a built-in polar scope. To polar align the Sky-Watcher EQ8-R Pro you must mount the optional polar scope and l-bracket, or use an electronic polarscope as I did.

I mounted the QHY PoleMaster to the front of the telescope dovetail. This is how I polar aligned the Celestron CGX-L and 8″ RASA, so thankfully I already had the ADM PoleMaster adapter handy. 

For this method to work, you’ll want to make sure that the telescope is in the home position on both axes. On the Sky-Watcher EQ8-R Pro, it simply means using the homing sensors to find this position when you turn the mount on. After setting the home position on the hand controller, the mount will run through a series of small movements to identify true “home”. 

polar alignment

The QHY PoleMaster is a great solution for polar aligning the EQ8-R Pro. 

Adjusting the EQ8-R Pro to your latitude is done via the heavy-duty crossbar style bolt (I’d love to know the technical description for this style of bolt in the comments), which is smooth and solid. The big green knobs on either side of the mount head base allow for precise azimuth control. Everything feels extremely solid and secure, which is exactly what you would expect on a telescope mount of this caliber.

Tracking Accuracy

An astrophotography setup that includes a 32-pound apochromatic refractor telescope at 1040mm focal length demands a robust tracking platform. With two 26-pound counterweights attached to the other end, balancing this precious cargo was rather easy. More importantly, the load was secure thanks to the 3 massive locking bolts on the dovetail saddle. 

The RA and DEC axes feature a unique design I have not seen before. Each axis rotates on a massive, silver disc stating “Warning, Do Not Apply Pressure” (shown below). The Sky-Watcher EQ8-R Pro features a belt drive system in each axis to minimize backlash and reduce periodic error. The onboard computer includes a PPEC training program for those that want to maximize the precision of the mount in a permanent setting. 

RA and DEC axis

The massive silver disc design of the RA and DEC axes. 

My primary imaging camera with this setup is a Starlight Xpress SX-42 and a 7-position filter wheel. This is a monochrome CCD camera with impressive specs. An OAG (Off-axis guider) and Starlight Xpress Lodestar X2 monochrome camera handle the autoguiding for this rig, and in my first few runs with this configuration, ran exceptionally well. 

I used the popular PHD2 Guiding software to autoguide with the Esprit 150 on the EQ8-R Pro. Because the Lodestar X2 camera was fitted to the OAG on the filter wheel, I was guiding on a star using a focal length of 1040mm!

For each of the deep-sky objects I chose to photograph, I collected 5-minute exposures using 1.25 Astronomik 6nm filters. The tracking accuracy of the Sky-Watcher EQ8-R Pro was exceptional, with pin-point, round stars in each and every 5-minute exposure. Utilizing the autoguide port on the EQ8-R Pro, I see no problem shooting 10 or even 20-minute exposures with this setup.

Mount Specifications

  • Mount Type: High-capacity motorized equatorial
  • Tripod: Optional heavy-duty pier tripod
  • Power Requirements: DC11-16V, 3 amp
  • Motor Drive: 0.9° hybrid stepper motor
  • Tracking Modes: Equatorial Only
  • Alignment Procedures: 1, 2, 3 star-alignment
  • Hand controller: SynScan, PC Direct
  • Database: Messier, NGC, IC and SAO Catalogs (42,900 total)
  • Cable Management: 4 x USB 3.0, 3 x 2.1mm Power Ports, 3 X Serial Connections
  • Dovetail Compatibility: D-Style
  • Latitude Range: 10° – 65°
  • Mount Weight: 56.8 pounds
  • Tripod Weight: 64.8 pounds
  • Payload Capacity: 110 pounds

Final Thoughts

4 nights with the Sky-Watcher EQ8-R Pro is not enough mileage to write a meaningful review. I will continue to spend time with the mount over the next few months, and see how well it handles the cold Canadian winter. In the brief (clear) windows of opportunity I had, I managed to collect some impressive images using the monochrome CCD camera and filter wheel on this mount. 

Here is an image of IC 410 (The Tadpoles Nebula) captured in the Hubble palette (SII=RED, Ha=GREEN, OIII=BLUE). I captured roughly 1.5 hours worth of exposure time through each Astronomik 6nm filter and mapped the monochrome images to color channels in Adobe Photoshop. 

Tadpoles Nebula

The Tadpoles Nebula. Esprit 150 on the EQ8-R Pro Mount. 

I understand that the leap in progress (as far as image quality) is primarily due to upgrading to a monochrome CCD camera from a one-shot-color CMOS rather than the mount itself. However, this was a very demanding optical system that requires reliable tracking and operation. 

Overall, I was extremely impressed with the simple and reliable performance of the Sky-Watcher EQ8-R Pro. It made the transition from a medium-sized mount to an “observatory-class” monster a smooth transition. Personally, I have a soft spot for Sky-Watcher mounts based on my own history with the brand. 

For those looking to upgrade their iOptron, or Celestron mount to something with a greater payload capacity, you may prefer to stick to what you’re used to. Based on my early successes with this mount, and my preference to the SynScan system, I think that the Sky-Watcher EQ8-R is a top contender in this category. 

Related Tags

Sky-Watcher Star Adventurer Pro Review

|Equipment|21 Comments

The Sky-Watcher Star Adventurer Pro is an extremely popular portable star tracker designed for astrophotography. After using iOptron star trackers for deep-sky astrophotography exclusively, it was time to see what all the fuss was about.

In this post, I’ll share my unbiased opinion about the Sky-Watcher Star Adventurer Pro, and actual images I was able to capture using it. The setup I used was the Pro Pack version, that comes with the counterweight kit, latitude EQ base, and fine-tuning mounting assembly.

Sky-Watcher Star Adventurer Pro Review

Sky-Watcher Star Adventurer Pro Review

If you would like to get a good look at the Star Adventurer Pro Pack in action, please enjoy my video review on YouTube: 

In the beginner stages of astrophotography, one of the most daunting challenges is choosing a reliable tracking mount for long exposure photography at night. Affordable, portable camera tracker mounts are a fantastic way to start, because they are not overly complex, and can provide promising results in a short period of time. 

If you’re new to the world of star trackers for astrophotography, this article should help clear things up. Essentially, a tracking camera mount allows you to shoot sharp, long exposure images of deep-sky objects in space. For me, this is often a large nebula or galaxy, but it could be anything from a star cluster to a comet.

The star trackers in this category have many names, from “tracking camera mounts”, to “multi-function mounts”. Whatever you call it, mounts like the Star Adventurer Pro (and Star Adventurer Mini) were designed to be portable, quick to set up and take sharp images at varying focal lengths. 

This mount can be used in a staggering number of configurations for astrophotography, from dual-camera and telescope setups to a versatile time-lapse photography/video mode. Whichever type of astrophotography/videography you’re into, you’ll be able to enjoy up to 11-lbs of gear in more orientations that you thought were possible. (I never thought of using the mount in horizontal rotation time-lapse mode before!)

sky-watcher star adventurer mount

The Sky-Watcher Star Adventurer Pro sits in an increasingly crowded space of portable astrophotography mounts. If you’re familiar with my work, you’ll know that I am no stranger to Sky-Watcher products, with my primary imaging rig consisting of an EQ6-R Pro equatorial mount and an Esprit 100 APO refractor. 

Does the fact that the Star Adventurer Pro matches my existing Sky-Watcher gear (lime green and white) affect my opinion of the mount? A little. The previous version of this mount was black and red, which would have matched the RedCat a lot better!

The outrage from the audience of my YouTube video (because I did not review the Star Adventurer mount) resulted in Sky-Watcher USA reaching out to me to test the Sky-Watcher Star Adventurer Pro Pro Pack. (Thanks!)

Portable Astrophotography Setup

The Star Adventurer Pro with the fine-tuning mounting assembly and counterweight attached.

The Pro Pack

The Sky-Watcher Star Adventurer Pro comes in 3 packages. If you are interested in maximizing the full potential of this mount and would like to use it with a small telescope (like the William Optics RedCat 51) or heavy telephoto lens, I suggest investing in the Pro Pack.

What’s Included:

  • Star Adventurer Pro Mount Head
  • Dovetail L-Bracket with DEC Fine Adjustment
  • Built-in Polar Scope
  • Ball Head adaptor
  • Polar Scope Illuminator
  • Latitude EQ Wedge
  • Counterweight Shaft
  • 1kg Counterweight

The Pro Pack includes the multi-function mount, a polar scope with an external, switch-on illuminator, a counterweight kit, a ball-head adapter, the latitude (EQ) base, and a declination bracket. The build quality and finish of the mount are impressive. The main body of the mount is metal, and the core components like the mode dial, adjustment knobs, and polar scope are solid and secure. 

As I’ll discuss further later on, the fine adjustment declination mount on the L-bracket was a pleasant and much-appreciated surprise. 

Another option to consider is the Sky-Watcher Star Adventurer Mini (SAM). This version is the smallest of the bunch and can handle a maximum payload of 6.6 pounds. This miniature tracking platform was designed for landscape astrophotographers looking to capture long-exposure nightscapes using a DSLR or mirrorless camera and lens. 

If keeping weight to a minimum, and ultra-portability is important to you, perhaps the SAM is worth looking into. I find the full-size Star Adventurer Pro to be extremely compact and portable and can easily handle some of the heavier lenses I use for astrophotography like the Rokinon 135mm F/2

Thus far, I have enjoyed using the Star Adventurer Pro with my 250mm RedCat 51 refractor most. With my Canon 60Da camera, this provides an advantageous 40omm focal length. The image of the Orion Nebula below was captured using 16 x 90-second exposures @ ISO 3200 on the Star Adventurer Pro mount. 

Orion Nebula

The Orion Nebula. Captured using a Canon 60Da DSLR camera and small telescope on the Star Adventurer Pro.

Complete Specifications (Pro Pack)

The Pro Pack includes absolutely everything you need to fully enjoy this mount, including the latitude EQ base and the counterweight kit. As with all of the gear I review on AstroBackyard, I was not paid to endorse this mount or any other Sky-Watcher product. Here are the core details of this star tracker:

  • Mount Type: Equatorial Camera Tracking System
  • Mount Weight: 3.63 lbs.
  • Built-In Illuminated Polar Scope: Yes
  • Autoguide Port: Yes
  • Maximum Payload Capacity: 11 lbs.
  • Type of Mount Electronics: Motorized (Non-Computerized)
  • Built-in Battery: Requires 4 “AA” Batteries
  • Motor Type: DC Servo, 144 teeth
  • Tracking Rates: Celestial, 1/2 Celestial, Solar, Lunar
  • Saddle Type: Vixen
  • Hand Controller: None

Here is a look at the body of the mount. This helpful diagram can be found in the Sky-Watcher Star Adventurer Pro manual (PDF). I have listed all of the numbered areas of the mount below.

Sky-Watcher Star Adventurer Pro

  1. Celestial Tracking Mode Dial
  2. Mode Index
  3. Polar Scope Cap
  4. Battery Base Cover
  5. Polar Scope Cover
  6. Mini USB Port
  7. RJ-12 Autoguider Port (6-pins)
  8. DSLR Shutter Control Port
  9. 3-Position Slide Switch
  10. Right Button and LED Indication
  11. Left Button and LED Indication
  12. Clutch Knob
  13. Mounting Platform
  14. Locking Knob
  15. Polar Scope Focus Ring
  16. Polar Scope
  17. Date Graduation Circle
  18. Time Meridian Indicator
  19. 4 X AA Battery Case
  20. Time Graduation Circle
  21. Time Meridian Indicator Calibration Screw
  22. Polar Scope Calibration Screw
  23. Worm Gear Meshing Adjustment Screw
  24. Sockey for 3/8″ Thread Screw
  25. 1/4″ to 3/8″ Convert Screw Adapter

Most users will most certainly power the mount using 4 X AA batteries, which will last for up to 72 hours worth of tracking. You also have to option of powering the mount using DC 5V with a  Mini USB cable (Type mini-b) from your computer. 

The power of a star tracker lies in the freedom and portability of the mount, so do yourself and power the Star Adventurer using batteries. 

The mode dial includes 8 positions. This gives you 7 possible tracking speeds (position 1 is “off”).

Tracking Speeds:

  • Celestial Tracking 
  • Solar Tracking
  • Lunar Tracking
  • 0.5X Speed (48-hour Rotation)
  • 2X Speed (12-Hour Rotation)
  • 6X Speed (4-Hour Rotation)
  • 12X Speed (2-Hour Rotation)

tracking rates

The mode dial lets you select the tracking rate of the mount.

How the Star Adventurer Pro Works

If you own a DSLR camera and a sturdy tripod, the Star Adventurer Pro opens up the world of astrophotography to you. That’s because this tracking camera mount will compensate for Earth’s rotation, and allow to capture long exposure images of deep-sky objects without star trailing. 

You could actually use the Star Adventurer for visual astronomy, too, if you wanted. The mount can handle up to 11 pounds of gear, which means a small refractor telescope with a diagonal and eyepiece are an option. 

If you have never used an equatorial mount for astrophotography before, the first thing you need to know is that polar alignment is critical.

polar scope

The built-in polar scope on the Sky-Watcher Star Adventurer Pro.

To polar align the Star Adventurer Pro, you need to align the latitude wedge with the north or south celestial pole from your geographic location. For me, that means adjusting the altitude control knob so that 43 degrees north is set.

Then, it’s a matter of moving the azimuth controls from side to side to place the north star in the correct position.

I use an app on my smartphone called Polar Finder to identify the exact position Polaris must be in from my location and time. Adjusting the Star Adventurer’s (or any other EQ mounts) Alt/Az controls is a quick and easy process once you get used to it.

Once you are polar aligned, you can dial the mode dial to 1X celestial tracking rate, which will match the apparent motion of the night sky. Images of 1-minute in length or more will no longer show star trailing, and deep-sky astrophotography is now possible. 

Using a Ball Head vs. Fine-Tuning Mount Assembly

If your interests lie in wide-angle nightscapes or Milky Way photography, chances are a ball head is your best option. A DSLR or mirrorless camera and wide-angle lens are relatively lightweight when compared to a telephoto lens or telescope. In this scenario, a ball-head will easily support your camera and lens, and you’ll have the freedom to point the camera in whichever direction you like. 

To use a ball head (not included with the mount) on the Star Adventurer, you can use the green 3/8″ ball head adapter. This attaches to the mounting platform, and then you can thread the base of your ball head to it. 

DSLR Camera and Lens

When using the mount with a DSLR camera and lens, the ball head and adapter is a handy configuration.

If you are using a longer lens in the 200-300mm range (or a telescope), you’ll probably want to use the fine-tuning mount assembly. The dovetail bar and declination bracket that comes with the Star Adventurer is probably my favorite feature of the mount overall.

You can mount your camera to the declination bracket of the Star Adventurer using the 1/4″ thread screw on the base of your lens collar or telescope mount. Then, just screw the counterweight bar into the bottom of the fine-tuning mount assembly, and adjust the height of the weight to achieve balance. 

Between adjusting the height of the dovetail bar on the mounting platform, and the counterweight itself, you should be able to really balance your load evenly. 

How to Find and Frame Deep-Sky Objects

The mount does not include a computerized GoTo system, so you’ll need to find and frame objects yourself. A lot of people ask me how to accomplish this, and it’s really not that hard. 

Just use a planetarium app on your phone, or desktop computer to get an idea of where the object you wish to photograph lies. That means finding the location of the object and the constellation that it is in, so you have a point of reference when your outside.

The brightest objects make this experience much easier. For example, in the northern hemisphere, the Pleiades star cluster is very easy to locate in the night sky, even in a light-polluted area. Once you’ve spotted its location, you simply use the RA and DEC controls of the Star Adventurer to “frame-up” the object using your camera lens or telescope.

If the object is bright enough, you can use the viewfinder on your camera to center it in the frame. You can also focus the image at this time, as long as their is at least one bright star in the field. 

To focus your camera lens or telescope, you can use the live-view mode on your camera, and zoom in 10X. You could also try using a Bahtinov mask, which will create a useful star pattern as a reference.

astrophotography

Set up under dark skies for astrophotography with the Star Adventurer Pro.

Helpful Tips and Advice

One thing I wanted to mention to new owners of the Star Adventurer Pro Pack is to remember to remove the 1/4″ to ⅜” convert screw adapter on the base of the wedge before installing it on your tripod.

The adapter is inside of the wedge base from the factory, but you’ll need to use a slotted screwdriver to remove it so it will thread onto your tripod.

The included adapter is handy to have but I feel that some owners will wonder why the wedge will not fit on their ¼” thread tripod if they haven’t removed it.

The Star Adventurer includes a DSLR shutter control cable to directly control your cameras shutter release with pre-programmed shutter intervals. I must admit, I have not used this feature because I am rather comfortable with my own intervalometer I’ve been using for years. However, if you don’t already own a remote shutter release cable, this is likely a nice bonus for you.

What I Like

The mount feels very stable and adjusting the altitude and azimuth controls of the base are precise. I find that I can polar align the Star Adventurer quickly and accurately without the need for an electronic polar scope like the PoleMaster or iPolar.

My favorite thing about the Sky-Watcher Star Adventurer is the declination bracket and controls. The DEC bracket makes it very easy to attach your camera or telescope to the mount. By releasing the clutch and turning the declination adjustment knob, you can point your camera or lens in any direction in the sky. When you have framed up your target, you can lock the RA clutch and begin tracking the object for an extended period of time. 

declination bracket

I really like the smooth, secure declination bracket on the fine-tuning mount assembly.

The included Sky-Watcher Star Adventurer Dec Bracket lets you attach a camera or small telescope, which can then be pointed to different Declination angles as you wish. The Dec bracket includes a motion control knob and a Dec axis locking knob. With the Dec Bracket installed, the Star Adventurer becomes a functional equatorial mount including Dec angle adjustments operating with manual control.

The fine-tuning mounting assembly with the ¼” screw is absolutely fantastic. I love the locking mechanism underneath, the precision declination angle control, and the overall secure and balanced nature of the design. If you plan on using the Star Adventurer with a small telescope, this will likely be your favorite aspect of the mount too.

The decision to power the mount using AA batteries rather than a rechargeable lithium-ion style battery is a little surprising to me. However, I honestly don’t think this is a negative aspect of the design, because it’s actually quite a practical and handy feature. You can buy AA batteries almost anywhere, which means there is no excuse to be without power in the field.

Tracking Accuracy

As amateur deep-sky astrophotographers will tell you, tracking accuracy becomes extremely important when shooting through a long lens or telescope. I tested the Star Adventurer Pro with an equivalent focal length of 400mm (Crop Sensor DSLR + 250mm telescope), and the Star Adventurer held up exceptionally well.

Here is a single 1.5-minute exposure @ ISO 3200 using my Canon DSLR and RedCat 51 refractor on the Orion Nebula. I’d say those stars look pretty round, wouldn’t you?

tracking accuracy

This means that anyone shooting with focal lengths of 400mm or less can expect similar results when the mount is accurately polar aligned and balanced. These results are very impressive for a portable star tracker.

What Could Be Improved

As mentioned in Peter Zelinka’s detailed review of the mount, the mode dial can be easily switched on in your camera bag by mistake. Although I always bring a spare set of AA batteries with me when traveling with the mount, it would be a shame to run the batteries dry by accidentally turning the mount on. Perhaps a way to lock the position of the dial with a simple switch could be introduced for the next design.

The polar scope illumination is accomplished by clipping in a small red LED light on the front of the polar axis. The simple device runs on a small battery and can be switched on and off. I would have preferred the light to be inside of the mount at all times because it would be very easy to misplace such a small item when traveling. 

The azimuth screws on either side of the wedge base are simple and easy to adjust. However, to “lock” the azimuth position down, you’ll need to use an Allen key to tighten the bolts down all the way. In reality, you could probably get away with tightening these screws by hand. 

latitude EQ base

Astrophotography Results

I have used the Star Adventurer Pro for a number of deep-sky imaging sessions from my backyard, and from a dark sky site. Many people will use this portable mount with a DSLR camera and lens, but the real test of its tracking capabilities are realized when a telescope is in use. 

Here are some of the images I’ve managed to collect using the Sky-Watcher Star Adventurer Pro using a telescope with a demanding equivalent focal length of 400mm.

Pleiades Star Cluster

The Pleiades Star Cluster. Star Adventurer Pro + William Optics RedCat 51.

Andromeda Galaxy

The Andromeda Galaxy. Star Adventurer Pro + William Optics RedCat 51.

Sky-Watcher Star Adventurer Pro vs. iOptron SkyGuider Pro

If you’ve followed this blog for some time, you’ll know that I’ve been using my beloved iOptron SkyGuider Pro for a long time, and loving every minute of it. So how does the Star Adventurer Pro compare the SkyGuider?

First off, I’ll say that I found it easy to collect impressive images using both mounts. They share many positive similarities including the handy polar alignment scope and reliable celestial tracking performance.

The differences between the two mounts lie in the hardware, fit and finish, and overall user experience in the dark.

Sky-Watcher Star Adventurer vs. iOptron SkyGuider Pro

For example, I found the latitude EQ base on the Star Adventurer Pro to be slightly better than the stock version on the iOptron. If you remember, I upgraded to the William Optics wedge base for the SkyGuider, and that evened the playing field. But you shouldn’t have to upgrade the base for reliable results.

I know that iOptron received a lot of valuable feedback about the included base, and I expect that they will improve upon the design in the future. It works fine, it’s just a bit finicky to get right. As you know, when it comes to astrophotography, your tripod and mount must be extremely secure and solid for successful results. 

The iOptron SkyGuider Pro wins in the polar scope department. The Star Adventurer Pro has a beautiful little scope in it, and it works great, but you need to attach an external clip to illuminate it. Don’t get me wrong, it’s a great design and it works fine. The problem is, it would be very easy to misplace and/or lose the tiny illumination device for the polar scope. The SkyGuider Pro’s light is built inside of the mount and you’ll never forget to pack it or leave it on. 

The declination bracket on the SkyGuider is notoriously unimpressive and users often upgrade this element. Again, William Optics came to the rescue and manufactured a gorgeous declination bracket design that feels like it should have been there from the start. In comparison, the smooth control knob and stable base on the Star Adventurer is my absolute favorite feature of the mount. 

I love that I can slide the dovetail bar up or down on the mounting platform on the Star Adventurer. This ensures that I achieve the perfect balance when mounting a small refractor and DSLR camera on top. 

Equatorial tracking mount

Final Thoughts

I must say, I now realize why everyone was so upset that I did not mention the Sky-Watcher Star Adventurer Pro when I discussed the topic of star trackers as a whole. Not only did the Star Adventurer Pro meet my demanding expectations of a portable tracking mount, but exceeded them in terms of enjoyment of the setup process. 

You may have noticed that I did not test the autoguiding performance of this mount, despite the fact that it includes a built-in autoguide port. Adding this element to the acquisition process can generate worthwhile results, but I tend to avoid this type of imaging when using a star tracker and save autoguiding for my advanced setups. 

Although the Star Adventurer has some quirks like a dial that’s easy to turn on by mistake, and an “add-on” polar scope illuminator, I think it’s an exceptional value and a great product. 

The fine-tuning mounting assembly and secure declination bracket is the most impressive design aspect of the Star Adventurer, and anyone who’s previously used an iOptron SkyGuider Pro will know why. If you’ve already invested in a competing model like the iOptron SkyGuider Pro, I see no reason to switch to the Star Adventurer Pro Pack.

However, if you’re in the market for your first star tracker, I think you’ll be absolutely thrilled with the Sky-Watcher Star Adventurer Pro – just make sure you get the complete package (Pro Pack!)

Pro Pack

Related Posts:

Helpful Resources:

Related Tags

Choosing a Star Tracker for Astrophotography

|Equipment|8 Comments

When it comes to astrophotography, a star tracker allows you to take better images. Your exposure lengths are no longer limited to 30-seconds or less due to a moving sky, and you can dial back camera settings like ISO and F-stop.

Equatorial camera mounts are designed to align with the polar axis of the night sky so you can take long-exposure images that are free of star trailing. Astrophotography demands long-exposure tracked images to collect as much signal (light) as possible, and that is exactly what a star tracker allows you to do.

This summer, I had the opportunity to review a new star tracker for astrophotography, the Fornax Mounts LighTrack II. From the mechanical design to the polar alignment procedure, this portable tracking camera mount is very different from any astrophotography mount I have ever used before.

It created the perfect opportunity to compare this camera tracker against some of the competing models in this category, in terms of overall user experience and performance. In this post, I’ll discuss the topic of using a star tracker for astrophotography, and which one I like using most.  

star trackers

The iOptron SkyGuider Pro, Fornax Mounts LighTrack II, and iOptron SkyTracker Pro

The star trackers shown above are capable of accurately tracking the night sky for long-exposure night sky photography. Each of them has their own strengths and weaknesses, from the portability factor to maximum payload capacity. I’ll do my best to explain why the overall user experience is the number one factor to consider when choosing a portable tracking camera mount.

How to Use a Star Tracker

A star tracker’s job is to match the rotation of the Earth so that you can take long exposure images (at nearly any focal length) of the night sky. To properly track the stars that appear to move across the night sky each night, a star tracker must be polar aligned and balanced.

To polar align an equatorial mount for astrophotography (including a small camera tracker), you need to adjust the altitude and azimuth of the base so that the polar axis of the mount is aligned with the celestial pole. In the northern hemisphere, we have the advantage of using the north star, Polaris, to aid in this process.

portable tracking mount

A portable star tracker with a ball head and DSLR camera attached.

Without using a star tracker, the stars in the night sky will begin to trail after about 15-30 seconds, depending on the focal length of the lens used. This is because the Earth is spinning on its axis, while the night sky is fixed. Amateur photographers using a stationary tripod can use the 500 rule as a guide for choosing the ideal shutter speed, but a star tracker removes this limitation altogether. 

When a tracking camera mount is used, a small motor slowly rotates your camera in right-ascension, effectively matching the apparent movement of the night sky, and freezing it in its tracks. The image below shows you what a 3-minute exposure using a 400mm lens would like without using a star tracker.  how to use a star tracker

Long exposure images (180-seconds) shot at 400mm with and without tracking. 

Luckily for amateur astrophotographers and photographers, there are a lot of great star tracker options to choose from these days. Unlike a heavy equatorial telescope mount, a star tracker is portable, small, and lightweight. Because of their small size and compact profile, they’re usually a lot more affordable, too. 

The star tracker category includes small EQ mounts that can carry a camera and lens combo, whether it’s for wide-angle Milky Way photography or deep sky imaging with a telephoto lens. Wide-angle nightscapes and Milky Way panoramas are the star trackers strong point. These types of projects usually involve traveling to a remote location, where packing light is necessary. 

If you’ve ever seen a detailed photo of the Milky Way like the one below, chances are the photographer used a star tracker to collect sharp, long exposure images with their camera and lens. 

The Milky Way

The Milky Way from a dark sky location. Stack of 60 x 2-minute exposures at ISO 1600. 

A star tracker will usually include a polar scope, which is used to help find the north celestial pole and adjust the mount accordingly. A star tracker that has been properly polar aligned will match the exact apparent rotation of the night sky to freeze deep sky objects in place.

Don’t expect these little units to carry a heavy telescope, although small refractors are an option if you’ve got a counterweight system to help balance things out. As you’ll soon see with the Fornax Mounts LighTrack II, a counterweight system is often an additional option from the base star tracker package. 

In fact, a lot of the star trackers available online today come in a potentially confusing number of packages and bundles. My advice is that you invest in a system that can not only handle your intended payload (and then some) but also provide you with features that make imaging in the field easier and more enjoyable. 

Popular Models in the “Star Tracker” Category

If you are a beginner in the world of astrophotography (see my beginners guide), investing in a tracking camera mount is the single biggest advancement you can make in terms of gear. You can now let the exposure time do the heavy lifting without relying on fast optics and high ISO settings to collect a decent amount of signal. 

The following tracking camera mounts share many similarities, including the ability to track the night sky at different speeds. Before investing in a dedicated star tracker for landscape or deep-sky astrophotography, make sure the bundle you order includes everything you need to mount your camera and lens.

star tracker for astrophotography

Which one should you invest your hard-earned money in for astrophotography? That will depend on the type of user-experience you are looking for, and my goal for this article is to highlight the key differences in the user experience for each mount. 

If you’re just looking to shoot wide-angle astrophotography using a camera lens, I’ve got good news for you. All of the star trackers mentioned above are capable of accurately tracking the night sky for incredible long exposure images like the one below (including the most affordable option, the iOptron SkyTracker Pro).

Cygnus stars

Canon T3i and Rokinon 14mm F/2.8 lens on the iOptron SkyTracker Pro. 

What They Do Best

These mounts are primarily designed for wide-angle astrophotography, meaning projects like Milky Way panoramas or mid-range focal length compositions using a telephoto lens in the 100-200mm range. That’s not to say that you can’t use a star tracker for high magnification deep-sky imaging, but that will demand the most of your tracker, and a require a diligent setup routine.

The portable nature of a star tracker often leads to some of the most memorable deep sky astrophotography sessions in the field, as they offer you the freedom to travel to a dark sky location without a trunk full of gear. One of the most incredible astrophotography adventures of my life was setting up an iOptron SkyGuider Pro and William Optics RedCat 51 telescope to capture the Carina Nebula from Costa Rica. 

wide field astrophotography

The Carina Nebula from Costa Rica (9-minute exposure using a star tracker and small telescope).

It simply wasn’t possible to bring my computerized telescope mount to this location (on a plane), yet a star tracker fit in my carry-on bag and allowed me to collect tracked images of the night sky from the middle of the resort. These are the kinds of adventures you can expect when you invest in a portable star tracker for astrophotography.

Key Benefits of a Star Tracker

  • Quick Setup and Alignment
  • Lightweight and Portable
  • Great for Travel
  • Built-in Battery Power*
  • Great for Camera Lens Astrophotography

* The Fornax Mounts LighTrack II requires an external 12V power source.

tracking camera mounts

From my personal experience using star trackers for astrophotography from the backyard and beyond, I believe the absolute most important aspect to consider is the user experience. If the star tracker is not easy to use in the field, or the process of setting up takes too long, you won’t use it as much. That’s all there is to it. 

As any experienced amateur astrophotographer will tell you, your motivation to stay up all night and image will vary. Any additional friction between you and a successful image has a way of affecting your decision process of stepping outside on a less-than-perfect night.

Don’t forget about the tear-down process either. If the clouds roll in and it looks like rain is coming, a lengthy teardown routine can turn into a stressful situation. Star trackers can usually be carried inside the house with all elements attached in a moment’s notice. The same can not be said for a full-blown deep sky astrophotography kit

A star tracker should allow you to quickly get up-and-running under a clear night sky. It should be a pain-free experience that provides the freedom and flexibility to take amazing astrophotography images wherever, and whenever you want.

astrophotography

All of these photos were captured using a portable camera tracker mount.

Which Star Tracker is Right For You?

I am hesitant to state which star tracker is “best”, as I have found them all to have their strengths and weaknesses in terms of user experience in the field. Since this article was first published, I reviewed the Sky-Watcher Star Adventurer Pro and you can read it here

I often see comments from beginners about being limited to a maximum exposure time using a particular mount before the stars begin to trail. My honest opinion is that these situations are almost always due to user error in the polar alignment and balancing procedure.

Each and every star tracker I have ever used for astrophotography was capable of sharp, 3-minute exposures using a focal length of up to 200mm. A portable star tracker must be accurately polar aligned and balanced to work properly. This may seem obvious to most people, but time and time again I see poor results being blamed on the hardware itself. 

iOptron SkyGuider Pro

The iOptron SkyGuider Pro with a telescope attached. 

My portable star tracking mounts have traveled with me to some amazing places and captured some of my favorite astrophotos. Both of the iOptron star trackers I am about to cover are extremely popular in the amateur astrophotography and nightscape photography community, and for good reason.

iOptron SkyTracker Pro

If you’ve watched any of my previous videos, you’ve probably seen the iOptron SkyTracker Pro in action. This ultra-lightweight star tracker is iOptron’s latest variation of their incredibly popular and affordable wide-angle astrophotography mount.

The SkyTracker Pro (not to be confused with the SkyGuider Pro) weighs just 2.6 pounds and houses everything you need for long exposure nightscapes in a little red (or black) box. A plastic box that is, with adorably simple controls to accelerate the RA axis to your intended target.

iOptron SkyTracker Pro and Camera Lens

The iOptron SkyTracker Pro with a DSLR camera and wide-angle lens attached. 

  • Weight: 1.5 lbs.
  • Max Payload: 6.6 lbs
  • Max Useful Focal Length: 200mm
  • Built-In Battery: Yes (Li-Poly 3.7V)
  • Built-In Polarscope: Yes
  • Autoguider Input: No

This camera mount was designed for wide-field nightscape images using a DSLR camera and lens. Many people have had great success using the SkyTracker with an ultra-wide-angle lens like the Rokinon 14mm F/2.8, all the way up to some heavier glass such as the Rokinon 135mm F/2. 

It’s the most affordable star tracker I’ve used, and it has delivered exceptional results using a number of different camera lenses. One such instance was the time I used the SkyTracker Pro with my Canon EF 24-105mm F/4L Lens to shoot Mars and the Pleiades star cluster in the same frame. 

Planet Mars and Pleiades

The Planet Mars alongside the Pleiades Star Cluster. iOptron SkyTracker Pro and 24-105mm lens @ 105mm.

iOptron SkyGuider Pro

The SkyGuider Pro is a big step up from the Tracker, offering a heavier payload capacity, a more robust design, and the ability to autoguide your images. The iOptron SkyGuider Pro is a top contender in this category with stellar reviews from experienced nightscape photographers.

This portable EQ mount fits in the palm of your hand, yet can handle up to 11 lbs of imaging gear. With the counterweight kit attached, the SkyGuider has no trouble with larger telephoto lenses and even small refractor telescopes such as the William Optics RedCat 51.

deep sky astrophotography

The North America Nebula in Cygnus. iOptron SkyGuider Pro with William Optics RedCat 51 attached. 

  • Weight: 2.2 lbs.
  • Max Payload: 11 lbs
  • Max Useful Focal Length: 400mm
  • Built-In Battery: Yes (Li-Poly 3.7V)
  • Built-In Polarscope: Yes (Illuminated)
  • Autoguider Input: Yes

Beginners often get tracking and guiding mixed up or assume that they both mean the same thing. Tracking is the act of matching the rotation of the Earth using an RA (right ascension) motor, with the axis of the mount aligned with the celestial pole. Guiding is a specialized astrophotography technique that uses a secondary camera to lock-on to a guide star and sends small commands to the mount to improve tracking accuracy. 

The iOptron SkyGuider Pro includes an ST-4 autoguide port that allows you to autoguide using the appropriate cabling and software on your computer. Although autoguiding is a powerful feature that allows for even longer exposures (and the benefits of dithering), it requires additional hardware to run. 

RedCat 51 mounted to an iOptron SkyGuider Pro

The William Optics RedCat 51 is a great match for the SkyGuider Pro. 

For smaller loads, such as a DSLR camera and 50mm lens, you can simply attach a ball head to the 1/4″  threaded socket on the mount. Heavier camera lenses or small telescopes will need to be mounted to the declination plate and utilize the counterweight system (shown above.)

For those that prefer to polar align their SkyGuider Pro electronically, the iOptron iPolar device was designed to fit neatly inside of this camera tracker. Be advised, that once you make this modification to the mount (or order a version with the iPolar included), you lose an element of portability with the need for dedicated software control. 

If you’re thinking about diving into the world of telescopes for astrophotography, I’d recommend the RedCat 51 Petzval APO to compliment the SkyGuider. This F/4.9 quadruplet apochromatic refractor is exceptionally sharp and delivers incredible wide-field images with a focal length of 250mm.

William Optics RedCat 51

Sky-Watcher Star Adventurer

The Sky-Watcher Star Adventurer Pro is responsible for one of my favorite astro-images of all time, the Andromeda Galaxy. This portable star tracker is easy to polar align, and the pro pack comes with everything you could possibly need to mount your DSLR camera, lenses, and even a small telescope. 

The following image was captured using a Canon 60Da and a William Optics RedCat 51, mounted to the Sky-Watcher Star Adventurer Pro. I stacked 100 x 2-minute exposures at ISO 1600 for an unforgettable shot of M31:

Andromeda Galaxy RedCat 51

The Andromeda Galaxy captured using the Sky-Watcher Star Adventurer Pro.

When comparing the specs between the iOptron SkyGuider Pro, and the Sky-Watcher Star Adventurer Pro, you’ll notice a number of similarities. For example, the “Pro Pack” includes a counterweight kit, wedge base, and a built-in illuminated polar scope.

sky-watcher star adventurer mount

  • Weight: 2.2 lbs.
  • Max Payload: 11 lbs
  • Max Useful Focal Length: 400mm
  • Built-In Battery: Yes (4 x AA)
  • Built-In Polarscope: Yes
  • Autoguider Input: Yes

The Star Adventurer includes a built-in WiFi, Android/iOS App control for those looking to control projects such as time lapses with your DSLR. Like the iOptron models I mentioned above, the Star Adventurer includes modes for solar, lunar, sidereal, and half sidereal tracking rates.

I really like that the Star Adventurer can run on 4 AA Batteries. Although it may seem like a step backward from a rechargeable li-poly battery, this feature may come in handy when your taking pictures nowhere near a source of power. Sky-Watcher reports that these batteries can power the mount for up to 72 hours, more than enough time for a night or imaging or two.

I found the Sky-Watcher Star Adventurer Pro to deliver an exceptional user experience, right out of the box. The hardware and premium finishes of this portable star tracker really stood out to me, and I love the mounting bar and counterweight kit. 

sky-watcher star adventurer

Using the Sky-Watcher Star Adventurer at the Black Forest Star Party in September 2019.

Fornax Mounts LighTrack II

Fornax is a company based out of Hungary, and they are no stranger to astronomical equipment. Fornax has been manufacturing astronomical mounts for nearly 20 years, working on professional astronomical projects such as the HATNet Exoplanet Survey (Hungarian Automated Telescope) for discovering exoplanets.

The Fornax Mounts LighTrack II looks and acts differently than all of the other star trackers I previously mentioned. It uses a friction motor drive system that slowly sweeps an arm across the base of the mount. The fine friction strip helps the LighTrack II maintain balance, and was designed with strict production tolerances.

Like the other star trackers mentioned, the LighTrack II has 4 tracking speeds. Sidereal, Solar, Lunar, and Half. The “half” speed mode can be used to create nightscape images with terrestrial elements. For example, if you wanted to capture an interesting wide-angle landscape, but want to expose the night sky longer – you can, without the landscape being blurred.

tracking camera mount

Fornax Mounts LighTrack II.

  • Weight: 2.9 lbs.
  • Max Payload: 14 lbs
  • Max Useful Focal Length: 500mm
  • Built-In Battery: No
  • Built-In Polarscope: No (Additional Accessory)
  • Autoguider Input: Yes

The bundle I received from Fervent Astronomy included the MMW-200 wedge to mount the tracker to my tripod, and the counterweight kit (that I have not tested yet). The hardware is impressive, from the aluminum alloy components to the carbon-composite plastic housing for the electronics.

However, there are 2 colossal differences between the iOptron and Sky-Watcher camera trackers and the LighTrack II. The first is, this mount requires an external 12V power supply. There is no internal battery inside of the LighTrack II. So, if you plan on traveling with this mount you’ll need to bring a reliable battery or find an outlet and extension cord nearby.

The second is that the LighTrack II will only track your subject for 107 minutes, before having to return the tracking arm to its starting position. Luckily, you can use the panning control knob of your ball head to keep the camera stationary during this process.

The good news is, once you’ve powered the LighTrack II up, you’ll benefit from incredibly accurate unguided performance. Fornax lists that peak-to-peak unguided tracking error is less than 2 arcseconds in 8 minutes. I can confirm that the unguided performance of the Fornax LighTrack II is incredible and that the 3-minute images I’ve captured at 400mm were razor sharp.

Fornax Mounts LighTrack II example image

I captured the Lagoon and Trifid Nebulae on the Fornax LighTrack II (William Optics RedCat 51 refractor).

Capturing the Lagoon Nebula and Trifid Nebula region with the Fornax LighTrack II was one of my first experiences using the mount, and it was a good one. The images were 3-minutes each at an effective focal length of 400mm with my camera system, and the unguided exposures were excellent. 

Here is a look a single 180-second sub exposure using the LighTrack II with my Canon 60Da, William Optics RedCat 51, and the OPT Triad Ultra filter. I’d feel comfortable going to 5-minutes, wouldn’t you?

Maximum exposure time

A single 3-minute, unguided exposure using the Fornax Mounts LighTrack II.

If you’re comparing the Fornax Mounts LighTrack II with the iOptron SkyGudier Pro, the accessories needed to complete a “full” package will send you well past the price of the SkyGuider Pro. The iOptron SkyGuider Pro full package includes the wedge, polar scope, and counterweight package. These items must be added on to the original price of the LighTrack II mount and purchased as a bundle. 

It’s worth mentioning, that perhaps the LighTrack II should not be in the star tracker category at all. Due to its increased payload capacity, autoguiding capability, and accurate tracking, you may want to consider it to be a bridge between a camera tracker and a traditional equatorial telescope mount. 

Star Tracker Comparison Chart

Here are the bare bones specs of the star trackers mentioned in this post. The listed “longest useful focal length” is merely a point a reference. In reality, I believe all of these trackers could handle a 2-minute exposure using an even longer lens.

BrandMountWeightMaximum PayloadMax. Useful Focal LengthBuilt-in BatteryAutoguide Port
iOptronSkyTracker Pro1.5 lbs.6.6 lbs.200mmYesNo
Sky-WatcherStar Adventurer2.2 lbs.10 lbs.300mmYesYes
iOptronSkyGuider Pro2.2 lbs.11 lbs.400mmYesYes
Fornax MountsLighTrack II2.8 lbs.13.2 lbs.500mmNoYes

Final Thoughts

I believe that any mount that wants to compete in the “star tracker” category should have a built-in power option. I realize that many people are accustomed to traveling with an external power supply for various devices, but I am not one of them.

The iOptron SkyGuider Pro (and SkyTracker Pro) include an internal, rechargeable, li-poly 3.7V battery that can be charged with a mini-USB charging cable. This simple design feature means that I’ll reach for the SkyGuider when traveling light, or setting up for a brief imaging session. If you want to travel to a remote location with the LighTrack II, be prepared to power the mount using the cigarette lighter plug from your car. 

In the end, the best camera tracker for astrophotography will always be the one you use the most. You can have the nicest equipment in the world, but if it doesn’t help you accomplish your final goal (pictures) on a consistent basis, it’s time to reflect on why you got into this crazy hobby in the first place.

best star tracker

Other Popular Star Trackers Available

There are new tracking camera mounts popping up every year. The models discussed in this post are not the only options available. Here is a short list of some of the other star trackers available today:

star tracker comparison chart

Related Tags

Sky-Watcher EQ6-R Pro Review

|Equipment|20 Comments

The Sky-Watcher EQ6-R Pro is a computerized equatorial telescope mount with GoTo capabilities. This equatorial (EQ) mount is capable of providing precise, accurate tracking of the night sky, and is suitable for long-exposure astrophotography. 

The core specifications of this equatorial mount include having a built-in ST-4 autoguider port, a payload capacity of 44 pounds, and a SynScan computer hand controller with an extensive database of objects. 

I have been using the Sky-Watcher EQ6-R Pro telescope mount since October 2018, and have used it to capture several deep sky images of nebulae, galaxies, and star clusters in space. In this post, I’ll share some of my favorite features of this EQ mount that I have experienced over several imaging sessions in the backyard.

Sky-Watcher EQ6-R Pro Review

The Veil Nebula captured using the EQ6-R Pro telescope setup shown on the right.

Whether you already own the EQ6-R Pro and are looking to tap into more of its features, or are trying to decide which equatorial mount is best for your visual observation or astrophotography goals, this article should offer up some useful input from someone who’s been in your shoes. 

Related Video: My first run with the Sky-Watcher EQ6-R Pro in the backyard

Sky-Watcher EQ6-R Pro telescope mount

Sky-Watcher EQ6-R Pro Review

Before we dive into some of the interesting features you may not have known about, here is an overview of exactly what the “EQ6” is capable of. As a preface, it’s worth noting that I use this mount for astrophotography exclusively, and I am in the northern hemisphere.

For those in the southern hemisphere, the process is very similar all around, aside from polar aligning the mount with the south celestial pole (SCP).

Before stepping up to the EQ6-R, I used a number of intermediate level astrophotography mounts, including the slightly smaller HEQ5 Pro SynScan model. 

Sky-Watcher EQ6-R Pro

Breakdown of the Gear Shown Above:

ItemModel
Equatorial MountSky-Watcher EQ6-R Pro SynScan
Imaging TelescopeSky-Watcher Esprit 100 ED APO
Imaging CameraZWO ASI294MC Pro
Autoguiding Scope60mm Starfield Guide Scope
Autoguiding CameraZWO ASI290mm Mini
AccessoriesQHY PoleMaster

The Basics

The EQ6-R Pro includes a SynScan hand controller with an LCD display that gives you control it’s features and basic functions. The left and right keys on the keypad control the Right Ascension (RA) axis, while the up and down arrows are used to control the Declination (DEC) axis. 

You can control the slew speed by selecting the RATE shortcut button (2) on the keypad, as it is useful to make large movements at a high speed, and subtle adjustments using a slow speed. The Sky-Watcher EQ6-R Pro has 10 slew speeds for complete control over the movement of each axis. 

Before powering up the EQ6-R, your telescope should be in the home position. This means that the EQ head is leveled on the tripod, and the RA axis is pointed towards the north celestial pole (NCP). The counterweight should be at its lowest position, and the telescope should be pointing towards the NCP.  You can then turn on the mount and select the operation mode. 

For those interested in astrophotography, you will only ever want to use the mount in EQ mode. 

Iris Nebula

The Iris Nebula in Cepheus captured using the setup shown on this page.

With the RA and DEC clutches locked, and counterweight(s) attached, you can mount your telescope on top of the EQ head. This is accomplished by fastening the mounting plate of your telescope to the saddle, which accepts both D and V-style mounting plates.

Getting Started

Once the SynScan system has initialized, you can enter in the geographic coordinates of your observing site.

This involves entering the latitude and longitude coordinates of your current location using the cursor on the LCD display and the keypad. Then, you will enter your current time zone, which for me, happens to be UTC -4 in southern Ontario. 

You can also enter in your current elevation, which is used for atmospheric refraction compensation (generally, the higher your elevation, the better). Next is setting the current date and time, and whether you are currently on daylight savings time.  

Once all of these important details have been entered (so the mount understands what is available in the sky from your location), you reach the mount alignment process, with the “Begin Alignment” dialog served up on the LCD screen. 

SynScan Hand Controller

The SynScan Hand Controller set to EQ Mode. 

Use the “Park” Feature

This simple, yet useful feature automatically aligns your telescope mount in both axes at the beginning of your imaging session. It is not exclusive to the EQ6-R Pro, yet it is easy to miss if you don’t follow the instructions in the manual on your first few runs. 

This feature is located under the “Utility Function” menu and asks you to turn off the mount after the park position has been confirmed. The next time you turn the mount on, you will see a dialog on the LCD display asking if you would like to start from the park position.

This is a handy feature that I did not personally take advantage of for the first few months of ownership with the mount. It is nice to confirm the home position when setting up, especially before beginning your polar alignment process.

The EQ6-R is Easy to Polar Align

Whether you use the built-in polar scope with the illuminated reticle or use a QHY PoleMaster device, polar aligning the EQ6-R is a breeze. 

This largely due to the fact that the EQ6-6 includes large, Alt/Az adjustment bolts with comfortable handles. Fine-tuning the polar axis of this equatorial telescope mount is possible thanks to these convenient controls.

The built-in polar finder scope with illuminated reticle allows you to accurately polar align the mount without the need for additional software or accessories. You can either use a third-party mobile app like “Polar Finder” to find out the current position of Polaris, or simply use the information displayed on the SynScan hand controller. 

The SynScan hand controller displays the position of Polaris in polar scopes field of view (FOV). You need to imagine that the large circle in the FOV of the polar scope as a clock’s face with 12:00 sitting at the top.

Then, it’s simply a matter of adjusting the Alt/Az bolts of the mount to place Polaris in the “HH:MM” position provided.

Using a PoleMaster with the EQ6-R

If you don’t like getting underneath the polar scope for a real-time view of the NCP or SCP, the QHY PoleMaster is a great option. This electronic polar scope uses a small camera to display the region surrounding the north (or south) celestial pole. 

Using the live feed through the camera, you can fine-tune your Alt/Az adjustments in a very precise manner. The PoleMaster requires the appropriate adapter (this is the one you need) to fasten it to the polar axis.

QHY PoleMaster Adapter

Fastening the PoleMaster to the EQ6-R using the necessary adapter.

You Can Improve the Alignment Accuracy

Before running a star alignment routine, make sure that your telescope is well balanced, and that there are no loose cables that could get caught and snag on the mount. 

The alignment routine involves choosing a bright, named star from the database and centering it in your telescope eyepiece or camera. The LCD screen displays “Choose 1st Star”, at which point you can cycle through the list to find a star that is not blocked by any obstructions from your location, and press enter.

A word of caution here, once you hit enter, the mount will start to slew to the object immediately. 

From here, it’s a matter of using the arrow buttons on the keypad to center the star. Remember, you can change the slew speed at any time by pushing the “Rate” button and setting the value higher or lower. It is often useful to leverage a finder scope on your telescope when slewing to your first alignment star, as it has a much wider field of view than your primary telescope and makes finder the first star easier. 

When running through a star alignment routine, it is important to consistently center the alignment star in the eyepiece or camera’s FOV. It is beneficial to use a reticle eyepiece with a small FOV. Personally, I use the camera’s FOV and center the star on my DSLR display screen (with grid enabled), or with a cross-hair overlay in my camera control software (Astro Photography Tool).

You can run a 1,2, or 3-star alignment to improve the pointing accuracy of the telescope. This is very important when it comes to photographing deep-sky objects that are nearly invisible until a long exposure image is collected. 

Tulip Nebula

The Tulip Nebula in Cygnus using the EQ6-R Pro mount for tracking.

Avoid Errors due to Mechanical Backlash

You can improve your alignment accuracy by avoiding errors due to mechanical backlash. Backlash is present in all equatorial telescope mounts, and does not affect your observing enjoyment, or your long exposure images when autoguiding is employed.

To avoid introducing alignment error caused by backlash, center the alignment star ending with an UP and RIGHT directions from the keypad. If you overshoot the star using this method, use LEFT and DOWN to bring the star back down the FOV and try again.

Computerized Telescope Mount

The Stepper Motors are Quiet

If you haven’t used this particular mount first hand, you may be wondering what the EQ6-R sounds like while it is slewing. I have heard many astrophotography mounts over the years, and this one is impressively quiet. 

This mount uses stepper motors with a 1.8° step angle and 64 micro steps driven. This technical design aspect results in a quieter mount than on using servo motors.

This means that even at the maximum slew speed (9X), the mount emits a modest hum that will not wake up your neighbors. While the telescope mount is tracking, it is completely silent. It’s only when you move the RA or DEC axis at top speed that you hear a noise.

Compared to other equatorial telescope mounts I have used, the audible sound the EQ6-R Pro makes is more than acceptable. When you are partaking in a hobby that takes place (alone) outside at night, avoiding loud or unusual noises when possible is always a good idea.

In contrast, the Celestron CGX-L computerized mount is noticeably loud while slewing at top speed. If this mount is being used in a closed observatory, it’s not an issue. However, I set up my equipment in a city neighborhood backyard. Depending on the time of night, I hesitate slewing to a new target because of this trait. 

The Autoguiding Performance is Impressive

The Sky-Watcher EQ6-R Pro delivers impressive results when the built-in autoguider port is leveraged. Over the years I have maximized the tracking capabilities of my astrophotography mounts by using an auxiliary guide scope and camera to autoguide using free software called PHD2 guiding

The EQ6-R Pro allows you to set change the default auto guide speed of the mount of 0.5X to 0.75X or 1.0X in the setup menu.  

I have experimented using a guiding rate of 1.0X , and saw little improvement to my guiding graph in PHD2 guiding over the default speed of 0.5X. The point is, you have the option of adjusting this setting if the need calls for it, and it’s a feature I’ve only recently tapped into on the EQ6-R Pro.

For a real-life example of the autoguiding performance you can expect with this mount, have a look at the screenshot below. The guiding graph shows that my total RMS error is 0.63″. Generally, a total RMS error of under 1-second means that you can expect pinpoint stars in your long exposure images.

EQ6-R autoguiding graph

My autoguiding graph in PHD2 guiding using the Sky-Watcher EQ6-R Pro SynScan mount. 

The Mount is Heavier Than it Looks

When it comes to equatorial mounts for astrophotography, being heavy is a good thing. However, I think some people that receive their EQ6-R for the first time may be a little surprised at how heavy the EQ6-R actually is (I was).

The weight of the EQ head is 38 lbs on it’s own, and the tripod adds another 16.5 lbs. Add in two 11-lb counterweights, and you’ve got a telescope rig that weighs 76.6 pounds, and is not going anywhere for a while.

Luckily, the EQ head includes a useful carry handle that I have certainly put to good use. Also, the supplied counterweight bar is retractable, which makes transporting the mount out the door of my garage a little easier. 

mount specifications

I used to carry my Sky-Watcher HEQ5 Pro SynScan around the yard with the telescope and counterweight attached. It was heavy and awkward, but manageable.

This is not possible with the EQ6-R, which is understandable considering the increased payload capacity (44-lbs) of the mount. To transport the Sky-Watcher EQ6-R from my detached garage to the yard, I must remove the counterweights and the telescope first.

It’s possible to lift the tripod with the EQ head attached (54.5 lbs), but this is likely too heavy for most folks. The good news is, this heavy profile means that accidentally bumping the polar alignment out of position by kicking a tripod leg is unlikely. Smaller, ultra-portable mounts like the iOptron SkyGuider Pro do not share this quality. 

You Don’t Need to “Mod” the Mount

If you’re a tinkerer, I get it. It may be tempting to you to open up the EQ mount head and take a look. I would advise against this personally, as you may do more harm than good.

I’ve seen a number of posts and videos discussing “belt-mods” and “hyper-tuning” Sky-Watcher NEQ6 and EQ6-R mounts. Personally, I wouldn’t recommend opening up the mount in hopes of tweaking performance, even if the underlying mechanics are straightforward to you.

In my experience, the Sky-Watcher EQ6-R can track accurately for 10-minute exposures (or longer) without any re-greasing or modifications to the worm gears when autoguiding is leveraged.

I suggest spending the time to get your balance and polar alignment spot-on before blaming the mount for bad tracking. It’s easy to get caught up in scrutinizing the mechanical backlash and periodic error present in the mount.

If you do dive into these advanced adjustments, you better be mechanically minded and ready to invest a “minimum of four hours” for a typical belt modification. 

astrophotography telescope

The EQ6-R with a Sky-Watcher Esprit 100 ED APO attached.

The SynScan Hand Controller gives you Extensive Options

The included SynScan hand controller includes an impressive 42,000+ object database, with almost every possible target you could ever want to observe or photograph.

The Messier object list gets a lot of use for amateur astronomers in the Northern Hemisphere, while the NGC catalog is great for pointing the telescope at more obscure nebulae and star clusters.

The database also includes IC and Caldwell catalogs, which covers most of the noteworthy subjects in the night sky. I only wish the database included the Sharpless catalog, for items such as the Tulip Nebula with no alternative designation.

To slew to these objects, it may be better to control the EQ6-R using your PC using supplementary PC-Link cable along with the appropriate ASCOM drivers and software.

I use the hand controller to align, and center my target. After a quick polar alignment routine using the QHY PoleMaster, the pointing accuracy of the mount is spot-on using just a 1-star align.

After you’re aligned and ready to observe or image an object in space, you can start by choosing a target using the “OBJECT” shortcut key, which contains the following object list:

  • Named Stars
  • Solar System
  • NGC Catalog
  • IC Catalog
  • Messier Catalog
  • Caldwell Catalog
  • SAO Catalog
  • Double Stars
  • Variable Stars
  • User Object
  • Deep Sky Tour

The deep sky tour is a very cool feature for visual observation sessions. Imagine a star party or public outreach event where you want to have the best list of targets at the ready.

This feature generates a list of the most famous deep-sky objects that appear in the current night sky overhead. You simply go through the list and pick them off one by one.

The Periodic Error Correction (PEC) Feature

Periodic tracking error is present in all equatorial telescope mounts, and is due to the design of the internal gears. The Sky-Watcher EQ6-R includes a periodic error correction (PEC) function to help correct this.

The PEC training procedure requires that you first polar align and star align the telescope mount. Then, slew to a star close to the celestial equator, and center it in the telescope eyepiece or imaging camera.

Then, navigate to the Utility Function > PEC Training mode and press enter. From here you can select the speed you would like to use for PEC training. The Sky-Watcher SynScan manual suggests using 0.125X sidereal rate for wider FOV telescopes such as the Esprit 100 ED APO.

After selecting the speed using the “1” or “2” keys, the screen will then start to display the elapsed time of the PEC training routine. Now, your job is to keep the star centered in the FOV using the left and right direction keys on the hand controller.

Once the PEC training routine has completed, the elapsed time will stop. Noe, you can select “PEC+Sidereal” as a tracking speed in the Setup menu. It is recommended to wait for at least one PEC training reply cycle to complete before you start taking your images.

Sky-Watcher SynScan Specifications

  • Object Catalog: Messier Catalog, NGC, SAO, Caldwell, Double Star, Variable Star, Named Star, Planets
  • Pointing Accuracy: Up to 5 arc-minutes RMS
  • Tracking Rate: Sidereal Rate, Solar Rate, Lunar Rate
  • PEC: PPEC (permanent PEC)
  • Database: 42,000+ Objects
  • LCD: 18 Characters X 2 Lines (adjustable contrast and backlight)
  • Keypad: Rubber with adjustable backlight
  • GPS: SynScan GPS Modular (Optional)
  • PC Connection: USB or RS-232X
  • Power Output: Power Supply Voltage – 0.7V, Max. 100mA current output

Power Supply for the Sky-Watcher EQ6-R Pro

As one Cloudy Nights forum member put it, the Sky-Watcher EQ6-R Pro can get “cranky” if the right power supply is not used. I have experienced this issue myself, when I used an AC to DC power adapter that did not provide a minimum 4 amps of power.

These days, I use a 12V AC/DC adapter with 10 amps to power the EQ6-R when plugged in at home. Here is a picture of the exact AC/DC adapter I use with the EQ6-R, and here is a link to it on Amazon. Others have found the Pyramid PS9KX 5 Amp power supply to work well with this mount. 

Power supply for EQ6-R Pro

The AC/DC adapter I use to power the EQ6-R Pro mount from home. 

Final Thoughts

As you may have noticed, there is a lot to cover when discussing all of the features of the Sky-Watcher EQ6-R Pro SynScan computerized telescope mount. The very first night I used the EQ6-R, I captured one of my favorite astrophotography images to date, and I knew I was in a for a long relationship with this mount. 

A reliable equatorial mount is the foundation of every great deep sky astrophotography kit, and the EQ6-R is a worthy investment for those looking for a stable, long-term solution for long-exposure imaging.

From my early days with the HEQ5 Pro to my latest session in the backyard with the EQ6, I’ve been extremely satisfied with the user experience and performance of Sky-Watcher’s affordable equatorial telescope mounts. 

astrophotography telescope mount

Pros:

  • Fantastic Tracking when Autoguiding Used
  • Quiet Stepper Motors even Slewing at 9X
  • Easy to Polar Align
  • Built-In PEC Training Feature

Cons:

  • Heavier Than it Looks
  • Intermediate Level Mount with Price to Match
  • Power Supply must be Correct or will Act Up

What Others Have Said:

“This mount is simply amazing. It is robust and tracks very well. I was taking 5-minute subs with no star trails. It is built like a tank and handles my Meade 5″ refractor with ease. The stepper motors are quiet. It’s simply a joy to use and I highly recommend it. The price is well worth it” – James S. on HPS website

“This mount is a tank. I have been doing astrophotography for several years using a lighter weight mount but I was ready to setup up to a heavier payload mount and I am very pleased.” – Ray on HPS website

twitter review

The Sky-Watcher EQ6-R Pro is Available with Free Shipping at High Point Scientific

EQ6-R Pro Review

Useful Resources:

Update the Firmware of your Sky-Watcher EQ6-R Pro SynScan (Sky-Watcher Website)

The Complete User Manual (Sky-Watcher SynScan PDF)

Do you use the Sky-Watcher EQ6-R Pro for astrophotography? If so, let me know your experiences with it in the comments. To stay up to date with my latest adventures in the backyard, be sure to subscribe to my newsletter. Until next time, clear skies!

Related Tags

Astrophotography Gear Update

|Blog Updates|10 Comments

Despite the excitement of a moving into a new house under Bortle Class 6 skies, I’ve had a rough start to the new year in terms of astrophotography.

The weather has not been friendly, from -30 C nights to consecutive weeks of precipitation and clouds. However, this has given me some time to get my astrophotography gear organized in the garage for my next imaging session. My weather app shows that Saturday has a chance of clear skies for about 2 hours, and I’ll be ready.

In this post, I’ll provide an update as to the astrophotography gear I’ll be using next. My goal is that you find some inspiration in this setup, and to keep you guys up to date with the latest happenings in the AstroBackyard. 

You can also stay completely up-to-date by subscribing to my newsletter: AstroBackyard Newsletter

deep sky astrophotography setup

Astrophotography Gear Update

As you progress in your journey of deep sky astrophotography, I think you’ll find that you gravitate towards equipment that delivers a painless and enjoyable experience. To me, this hobby is about more than just aperture and guiding accuracy. Yes, improving the quality of my images is very important, but its the road to get there that I think I enjoy most.

If you have been paying attention to the AstroBackyard YouTube Channel, it may appear as if I am collecting all of the latest and greatest gear to bring to show-and-tell. The truth is, if I don’t actually get a chance to use and share my experiences with these items, it’s of little value to the amateur astrophotography community.

We’re half way through the month of February, and I’ve got a staggering amount of exciting telescopes, mounts and accessories on loan for review. I’ll share more information about these products over the coming months, as I continue to educate myself about them and their intended purpose.

This post will focus on a deep sky astrophotography rig that I have set up in a semi-permanent fashion. This means that I can quickly set up this rig for some deep sky imaging if the weather provides an opening through the clouds. I do not own a permanent observatory, so everything needs to be carried from my garage to a spot in the yard.

This rig has been commissioned into action for this month based on the current temperatures and weather conditions I’ve been experiencing. Options such as a larger mount or telescope are reserved for more accommodating temperatures and predictable conditions.

Here is each piece of the deep sky astrophotography setup I have put together:

As you can see, there are some familiar faces on this setup. There are also some exciting new additions such as the Meade Deep Sky Imager IV and Xagyl Filter Wheel. I have never captured images using a filter wheel before, so this should be an eye-opening experience. 

Another noticeable change from my last  deep sky setup is the use of a monochrome astronomy camera in place of the OSC (One-Shot-Color) ZWO ASI294MC Pro. The Meade DSI IV uses the same camera sensor found in the incredibly popular ZWO ASI1600MM, the camera behind countless jaw-dropping images from Chuck Ayoub, Dylan O’Donnell, and Diego Colonello.

Let’s take a look at each piece of the rig in detail. 

Telescope Mount

The Sky-Watcher EQ6-R has been an absolute pleasure to use since it arrived in the fall of 2018 from Sky-Watcher. This computerized equatorial telescope mount is reliable and capable. The EQ6 model has been refined over the years, a big improvement over my old HEQ5 Pro SynScan in terms of build quality, technology and features.

It is a step up from the HEQ5 in terms of payload capacity as well, offering a commendable 44-pound payload. This is more than enough for most of the telescopes I use for astrophotography, including the Explore Scientific ED 102 CF refractor that’s currently riding on top.

Computerized Telescope Mount

Sky-Watcher EQ6-R Pro Computerized Equatorial Telescope Mount.

I have yet to control the EQ6-R via my computer, tasks such as star-alignment and object slewing have all been accomplished using the hand controller thus far. While browsing the Cloudy Nights forum, I discovered an incredibly helpful article by John Upton about controlling SynScan telescope mounts from your computer.

The Sky-Watcher EQ6-R I have has the new Version 5 SynScan hand controller with the USB A-Male to B Male (Printer Cable) on the bottom. This does not require the use of the PC Direct Mode when controlling the mount using Astro Photography Tool (APT).

Long story short, I plan to leverage the power of ASCOM and PC control to further automate this setup over the coming months.

Primary Imaging Telescope

Ah, the Explore Scientific ED 102 CF. My reliable 102 is beginning to rival the number of imaging hours I put on the 80mm version of this triplet years ago. 

The ED 102 has a practical focal length and ratio for most of the deep sky targets I am interested in capturing (714mm and F/7). The 102mm diameter gives it enough aperture to give it some extra light gathering power for faint nebulae and galaxies over a smaller refractor, yet it is still very lightweight and easy to manage.

Explore Scientific ED 102 Refractor Telescope

Explore Scientific ED 102 CF Triplet Apochromatic Refractor.

I have taken countless images through the ED 102, but collecting light on deep sky targets in monochrome with a filter wheel is all new territory. 

The reason I have chosen to enlist the old ED 102 instead of the Esprit 100 or William Optics Z73 is the modifications I have made to it. I have fitted a motorized focuser and focus motor controller box to this refractor to help me fine tune my focus on the fly. 

I have photographed many incredible deep sky objects with this telescope over the past 3 years and highly recommend it to anyone looking for a high performance imaging APO for astrophotography.

Primary Imaging Camera

The Meade DSI IV is a rather new dedicated astronomy camera in the amateur astrophotography world, and there is not a lot of information about it yet. Ontario Telescope and Accessories saw an opportunity for me to share information about this camera and dive into monochrome LRGB imaging.

When I learned that the Meade DSI IV mono houses the same sensor as the ASI 1600MM, I immediately agreed to this arrangement. The Meade DSI IV mono marks as a return to the dedicated astronomy camera market by Meade, and I have high hopes for this 4/3″ format 16 Megapixel CMOS sensor.

dedicated astronomy camera

Meade Deep Sky Imager IV Mono CMOS Camera.

The thermo-electric cooler will ensure that my images are virtually noise free when compared to the images I capture on a DSLR. This camera requires an external AC power adapter to run the cooling system, and connects to my PC using a USB 3.0 cable.

I have installed all of the necessary software to run this camera using APT on my imaging laptop, and have tested everything out to make sure the images are recorded properly. I will not be using the included SkyCapture camera control software that was bundled with the camera.

Reducer/Flattener

I have always used a field flattener and reducer with the ES ED102 Triplet to maintain a flat imaging field of stars in my images. The Starfield 0.8X reducer/flattener is a perfect match for this telescope as it was designed for imaging refractors of F/5.5 and above. 

This flattener requires 55mm of back focus, which I have achieved between the camera sensor on the Meade DSI IV and back of the flattener. The required distance was accomplished by using a t-mount adapter ring to thread the camera to the Xagyl filter wheel.

Threaded to the reducer/flattener, is an Optolong L-Pro light pollution filter. This 2-inch filter sits in front of the LRGB filter set residing inside of the electronic filter wheel (EFW). So, each colored filter in the EFW (and the luminance filter), will benefit from a a subtle reduction in the amount of artificial light pollution collected when imaging in the backyard.

This is a bit of an experiment, so I plan on imaging without this filter in the future to compare results.

Guide Scope

The autoguiding telescope is a Starfield 50mm guide scope. This miniature refractor telescope has a focal length of 190mm, and serves as a lightweight solution for autoguiding. I have used this guide scope on a few rigs now, and I enjoy the precision of the helical micro-focuser.

I’ve mounted the guide scope to the cradle ring handle of the ED 102, as there is a convenient slot to mount accessories using  1/4″ screws. This is better position than the default finder scope bracket that I have used in the past. The autoguiding combo now sits directly center over the primary imaging scope.

This mounting position also allows me to use a finder scope with the ED 102 and autoguiding combo attached, which is nice to have for my 3-star alignment procedure. Both the guide scope and finder scope add very little extra weight to this setup.

astrophotography telescope

Starfield 50mm Guide Scope Package with Altair GPCAM2.

Guide Camera

The camera I am using on this setup is my well used Altair Astro GPCAM2 Mono. This camera is sensitive enough to provide accurate autoguiding results using the PHD2 Guiding software, and has proven to be a dependable little camera over the past 2 years. 

Its low profile takes up very little space on the telescope and is virtually weightless. This autoguiding combo is a painless way to add some seriously powerful tracking abilities of your existing telescope mount without adding a heavy telescope or unneeded complexity to your setup.

The camera connects to to my USB hub with a USB A Male to B Male cable to display the live loop images on my PC, while the ST-4 cable communicates subtle commands to the EQ6-R for improved tacking accuracy via PHD. 

autoguiding

The Altair GPCAM2 Mono Guide Camera.

Filter Wheel

This a new experience for me, and I am still getting used to seeing a big black plate in front of the camera. This is a Xagyl 5-position filter wheel with 48mm slots certainly requires some space, but this Xagyl model is only 0.7″ thick. 

I’ve moved the imaging payload around with everything attached and balanced, and it appears as though I won’t have to worry about the filter wheel crashing into anything. I will certainly keep an eye on things, though.

With the included adapter from Xagyl, the filter wheel added an additional 19mm of back focus which I needed to account for when fastening the camera and flattener.

The filter wheel connects to my USB hub with a mini-USB cable, and thankfully does not require another power source and additional cord to my setup. 

electronic filter wheel

Xagyl 5-Position x 2″ Electronic Filter Wheel.

Camera Filters

The team at Optolong has provided me with a complete set of Optolong LRGB filters to use in conjunction with this monochrome camera. This is my first foray into the world of LRGB imaging with a monochrome camera, as I have never owned a filter wheel to automate the process.

These filters are the 2-inch (48mm) round mounted versions that I have carefully threaded into the Xagyl 5-position filter wheel. I have tested the selection of each filter using APT and everything appears to be working flawlessly thus far. 

The images I take through the Optolong filters will showcase not only the potential of the Meade DSI IV mono, but the LRGB filter set as well. Unfortunately, I have nothing to compare them too, but I will produce a full-color deep sky image with this system so you can make an informed decision for yourself.

Optolong LRGB filter set

Motorized Focuser and Controller

I installed a Pegasus Astro Motorized Focuser on my telescope in late 2017. Since then I have enjoyed the added functionality of my ED 102, which comes in really handy when monitoring my gear outside remotely. I used to have to run outside to make a small tweak to my focus, which would often result in a lengthy back and forth process.

Now, I can make fine adjustments to the focus on the fly using a combination of Team Viewer for remote access of my imaging laptop, and the focus control panel in APT. As the temperature changes throughout the night, I often need to tweak my original focus position from the start of my imaging session. 

Motorized focuser

Pegasus Astro Stepper Motor Kit and Dual Focus Motor Controller.

I simply observe any changes to the star sharpness and quality over the last few images, and make any slight adjustments as needed in between frames using the Pegasus Dual Motor Focus Controller (DMFC). APT provides useful HFD and FWHM metrics to measure the focus quality of your stars.

I have not experienced the autofocus feature in APT yet, but plan to investigate this further this year. 

Accessories

My favorite astrophotography accessory of this setup has to be the Pegasus Astro Pocket Power Box. If you remember my video from last year, this little blue box allows me to better organize and balance my deep sky imaging rig by connecting almost everything on top of the telescope. 

It powers my primary imaging camera, DFMC, and 2 dew heater straps. This not only cuts down on the number of cables running from my power bar and computer to the telescope, but also allows me to control the output of each port remotely using dedicated software from my PC.

Pocket Power Box

The Pegasus Astro Pocket Power Box.

I’ve also mounted an Anker USB 3.0 7-Port hub to the eyepiece tray spreader underneath the EQ6-R mount head. This gives me all of the USB ports I need for my astrophotography cameras and accessories.

I no longer recommend using this USB Hub. It has given me some trouble lately, potentially due to the cold weather. I have since upgraded to a StarTech 7-port USB Hub.

What  I have plugged into the StarTech 7-Port USB Hub:

  1. Meade DSI IV Mono Imaging Camera
  2. Altair GPCAM2 Guide Camera
  3. Pegasus Astro Pocket Power Box
  4. Xagyl 5-Position Filter Wheel
  5. QHY PoleMaster Electronic Polar Scope

With all of the cables carefully run down from the telescope into the 7-Port hub underneath, I only need to connect a single USB 3.0 cable to my imaging laptop. I ordered a nice 9-foot A-Male to B Male USB 3.0 cable for this connection to give me some flexibility when setting up. 

The computer I use for deep sky imaging is a portable laptop I purchased on Amazon last summer. This computer has all of the necessary software for astrophotography image acquisition installed such as APT, PHD2 Guiding, and the Pegasus Astro software for the Pocket Power Box (PPB), and DMFC.  

To combat moisture on the objective lens of my primary imaging telescope and guide scope, I use Kendrick dew heater bands that are powered by the PPB.

The Bottom Line

Cable management was a top priority of mine, as the goal is to be able to control this mount remotely from inside the house when it gets too cold to be out all night. I’ve used over 25 Velcro ties to bundle up the cables as neatly as possible to avoid potential cables snags. Some soft tubing to completely conceal this cables might look best, but I’ll monitor how things operate like this first.

The entire imaging payload is balanced perfectly on top of the Sky-Watcher EQ6-R in both axis. I’ve pointed the telescope in almost every possible position, and nothing catches or strikes the tripod. I still do not feel comfortable slewing to a new target remotely (nor do I have the PC connection set up yet), so for now that operation will only take place when I am sitting next to the rig. 

The most important aspect of this rig are the automation and portability qualities. What I mean by that is, I can quickly carry this rig out of the garage to set up and image on a night with a limited amount of clear sky time. Without the counterweights attached, I am able to lift the entire load up and place it in the yard without having to re-assemble it. 

If the telescope were larger and heavier, I wouldn’t be able to do this safely without sacrificing my back or the chance of dropping something. 

Once I set up the tripod and polar align the mount, I can perform a quick 2-star alignment and slew to my target. Once I am locked on and framed properly, I’ll head inside the house to monitor the imaging session using Team Viewer to access my laptop outside.

From here, I can make slight adjustments to focus and take images through each LRGB filter. I expect I’ll need a window of at least 3 clear hours to produce a color deep image using this system.

Now, if I could just decide on a target…

What’s Next?

You may have noticed the absence of some existing new astrophotography gear I have talked about over the past couple of months. Namely the ZWO ASIair WiFi camera control unit and the Celestron CGX-L telescope mount. 

Both of these products will be used in the near future as the weather improves and I can dedicate longer periods of time under the night sky. The plan is to use the ASIair on the Celestron CGX-L, with the new Celestron 8″ RASA attached.

I’ve got a few other new products to share as well, so I hope you stick around to see them over the coming months. Until next time, clear skies.

Related Tags