Skip to Content

Astrophotography

New Astrophotography Telescope

|Equipment|0 Comments

I am thrilled to announce the purchase of a brand new telescope for astrophotography, and one that I’ve had my eye on for some time. Those of you looking to dive into the hobby of deep-sky astrophotography for the first time should see my post a choosing a telescope for astrophotography. I break down my top 5 choices for a beginner, which includes the 80mm version of the telescope mentioned below. Spoiler alert, they’re all refractors!

It’s a very exciting time of year for astrophotographers with the return of the central bulge of the milky way in our night sky (in the Northern Hemisphere). I’ve got astronomy camping trips booked for June, July, and August – as well as some time off at work so I can spend more time in the backyard under the stars.   With that being said, I’ve decided to invest in some new astrophotography equipment that will hopefully lead to some incredible new astrophotos this summer.  Let’s start with the most exciting purchase I’ve made this year.

Explore Scientific ED102 Carbon Fiber

102mm F/7 Triplet Apochromatic Refractor

 

Explore Scientific ED102 CF

Explore Scientific 102mm Triplet Apochromatic Telescope – Carbon Fiber Edition

That’s right, I loved the Explore Scientific ED80 so much that the next logical move was to step up to the slick black carbon fiber 102mm version.  Many of you are like me and do not have a large budget for astrophotography gear. With so many astrophotography telescopes available, you better believe I did my homework first!   This triplet “apo” has received top marks from many deep-sky astrophotographers and was even my number 1 choice on my old “Top Astrophotography Telescopes Under $2,000” post.

This telescope from Explore Scientific is considered to be a wide-field instrument, but the increased focal length of 714mm is a big step up from the 480mm on my 80ED.  So what finally provoked me to take the plunge?  Well, the team at Explore Scientific reached out to me after finding this blog!  I was invited to provide a testimonial about my beloved ED80 Apo as well as share some of my astrophotography images on their website, social media networks, and Sky’s Up Magazine.

Related Post: Explore Scientific ED102 CF Review

 

Explore Scientific ED102 CF

 

 

Telescope Specifications

Focal Length: 714mm
Focal Ratio: f/7
Resolution: 1.14 arcsec
Diameter: 120mm
Weight: 7 lbs
Dovetail: Vixen

New Astronomik 12nm Ha Filter

This is another long-time coming item that I have had my eye on for years. I will now be able to capture some Hydrogen Alpha data through my light-polluted skies in the backyard. This filter also blocks out the glow from the full moon, so it will be interesting to see how much extra imaging I will be able to get in!  The Clip-in version for Canon EOS DSLR’s will fit snugly into my Modified 450D, replacing the IDAS LPS filter.

I will shoot my regular RGB data using the LPS filter, and add in some powerful Ha data to overlay in post-processing.  I am really excited to see how it reduces the star glow in my images as well. I ordered this filter from OPT telescopes today, and it should be arriving in as early as two weeks. Some of my favorite astrophotographers from around the web have used this filter and gotten impressive results.

Below, you’ll see my photo of the Soul Nebula using the Astronomik 12nm Ha Filter clipped into a Canon EOS Rebel T3i DSLR camera.

Soul Nebula in Ha

 

AstroBackyard on YouTube

 

I am blown away by the response from my YouTube channel.  In the latest video posted from my backyard, I mentioned how I couldn’t believe that I had almost 70 subscribers – that number has since jumped to almost 450 in about 1 month’s time.  Needless to say, I couldn’t be more inspired to make new astrophotography videos and share them with my YouTube audience. The comments and feedback from the videos have been very humbling, and confirm my efforts of making this website. It is already becoming hard to keep up with all of the astrophotography questions I am receiving on YouTube, which leads me to my next point.

AstroBackyard on YouTube

Frequently Asked Questions Section

I now receive anywhere from 3-10 e-mails a day asking different astrophotography related questions. I am always happy to help beginner astrophotographers get started, but my time is very limited. I have decided to use this opportunity to build out a Frequently Asked Questions section of this website.  This way, we can all learn from each other. This will also build out a helpful resource page that includes many of the most commonly asked questions about astrophotography.  I will likely divide the page up into subsections including equipment, software, acquisition, and processing questions.

NGC 4631 Whale Galaxy

Latest Imaging Session

I am currently taking my last number of images using my trusty ED80 – Is it weird that I feel emotional about that? My deal with Explore Scientific includes exchanging the ED80 for the new 102mm. This means that I will likely do my imaging with the 8″ Orion Astrograph while I wait for the ED102 to arrive. I did not shoot any deep-sky images during the last new moon because of an annual birding trip my Fiance and I go on. However, I have begun shooting some frames on NGC 4631 – the Whale Galaxy from the backyard. My first set of frames are not pretty, as they were shot under the bright glow of a 89% illuminated waning gibbous moon.  I am hoping to capture another hour or two of this object tonight if the weather cooperates.

2016-06-01 – Update!

I have imaged the Whale Galaxy for 4 nights (totaling 3 Hours and 52 Minutes of Exposure) The signal to noise ratio has improved greatly, and you can view my final image here.

Related Posts:

Explore Scientific ED80 Review

How a DSLR Ha Filter can Improve your Astrophotos

Deep Sky Astrophotography Beginners Guide

 

Related Tags

Screen Calibration

|Image Processing|4 Comments

When I purchased a new laptop computer back in 2016 for image processing and video editing and was quickly reminded of the importance of having a well-calibrated computer monitor.

The brightness of my new laptop screen was intense. It appears to be about 25% brighter than my well-calibrated 23 Inch external IPS monitor.  

When it comes to editing and viewing astrophotography images, the screen you’re using can really change the appearance of your results. If it’s too dim, you may not see all of the hidden imperfections in your data.

This results in astrophotography images that are less than pleasing to the eye. I’ve had to re-process many of my own photos in the photo gallery after discovered that they did not look the way I intended them to on different screens.

Screen Calibration for Astrophotography

If you have been processing your astrophotography images on a dim monitor, you may be in for an unpleasant surprise when you see them on a bright screen for the first time.

This can be a bit of an unsettling moment, especially if you’ve never been through this exercise before.

When you upload your image to the web, you have to accept the fact that people from all over the world may view your work on monitors and screens that display images MUCH different than yours.

Having a monitor that is too bright will show all of the impurities in your background sky.

One of the most extreme examples of the “bright screen effect” is to view your image on a mobile phone with the brightness tuned all the way up. Most people do not leave their mobile screens at this intense level at all times, but its interesting to see a potential worst-case scenario.

astrophotography tutorial

A common tactic beginners use (myself included), is to decrease the brightness or contrast of the image to “hide” the imperfections present in the background sky.

Noise, color blotches, and a generally poor signal-to-noise ratio turn to black. Unfortunately, this method degrades image quality and you lose an incredible amount of detail in your image. Don’t hide your sky!

It is wise to make sure your computer screen is giving you an accurate rendition of the image you worked so hard to capture. There are many ways to calibrate your computer monitor settings, including online tools and dedicated devices that can match specific color profiles.

The device below (Spyder5 Colorimeter), helps you share and print your images with the look you intended.

colorimeter

The Dataclor Spyder5Pro color accuracy device

A colorimeter will usually have a room light sensor that measures the lighting conditions of your room. If there has been a change in lighting in the room, it alerts you to modify your calibration settings for optimal color accuracy.

This creates a unique color profile for each of your monitors, and it can help you get a better match between your photos on screen and in print.

Why should you calibrate your monitor?

By spending a little time adjusting the calibration settings of your monitor, you can help ensure that the colors and brightness of your astrophotos are represented accurately.

I’ve never used a Colorimeter myself, but I have spent a lot of time adjusting settings manually to find the right balance. When I decide to start printing my photos, I think the Colorimeter is a good idea.

In terms of photography, screen calibration can have a dramatic effect on your online experience whether you are processing astrophotography images or not. You can ensure that you are seeing the images displayed on screen as they were intended to be viewed.  

This is especially important for creative professionals such as Graphic Designers, Photographers and Video Production teams.  

The idea is to have your monitor conforming to a preset color benchmark such as the sRGB or Adobe RGB color space.

screen brightness for astrophotography

 

How do your astrophotography images appear on other screens?

How to Manually Calibrate your Screen for Astrophotography

The first step towards adjusting your computer monitor display settings is by using the interface on the unit itself. Some models have more in-built control options than others. 

If you use an external monitor like me, it will have a set of controls, usually at the front and under the screen.

My ViewSonic LED monitor has the typical bare-bones contrast, brightness, and color mode. You’ll want to make sure that you do not have any ambient lighting in the room affecting your views, so close the blinds and turn off the light.

Do not calibrate your monitor in a bright, sunlit room, or with reflections appearing on-screen.

For accurate results, face your screen head-on, with your eye lined up with the top of the screen.

Calibration Tools and Adjustments

It is necessary to have some reference material on-screen that will let you know if you’ve pushed your settings too far one way or the other.  See the grayscale chart from APCmag below:

screen calibration tool

You should be able to distinguish between each shade of white/black

Using the Color Calibration Feature in Windows 10

If you are using Windows 10, they have a nifty color calibration walk-through that is great for making adjustments called Display Color Calibration.  

It will take you through a number of tests to see just how far off your display is.  They call it “color” calibration, but it’s really an overall screen calibration test.  

You can get to it by following this command path:  Start Menu > Settings > System > Display > Advanced Display Settings > Color Calibration.  The following calibration images are used in the Windows color calibration test.

Have you Checked Your Gamma Today?

“Gamma defines the mathematical relationship between the red, green, and blue color values that are sent to the display and the amount of light that’s ultimately emitted from it.”

Adjusting the gamma on your screen

In the image above, you should not see any overly obvious “dots” within the circles.

The Brightness Effect

As I stated earlier, having a display that is too bright can absolutely wreak havoc on an astrophoto that has been stretched too far. I know about this phenomenon all too well, as I like to stretch my data to its full potential (and sometimes go too far).

The tell-tale signs of an astronomical image that has been stretched too far, or with serious gradient and vignetting issues – is a muddy, green/brown background sky.  

The sky may appear to have a nice neutral dark grey or black on your dim monitor, but on your nephews brand new ultra-backlit iPhone, it’s a multicolored mess. 

Even images on APOD can appear to diminish in quality under the scrutiny of an overly bright display.

Here’s an image you can use as a guide.  You should be able to distinguish between the mans shirt and the background.  The black “X” in the background should be barely visible.

monitor calibration test

 

Contrast – Don’t Overdo it

Using the image below, adjust the contrast settings of your monitor so that the background appears black and not grey. If you have lost details in the white shirt the man is wearing, such as the buttons and creases, you have pushed the contrast too far.

adjusting contrast

My Best Advice

My advice is to process the image on image on a screen that has been calibrated as best as possible.  If you have access to an overly bright, unforgiving display – maybe have a look at your image on that as well.  

It can be useful to see an exaggerated version of your subject and fix any issues that really jump out at you.

It may be helpful to view your processed image on several different screens (including your phone) to get a feel for the middle ground. I usually preview my images on at least 3 monitors before posting online.

Take a look a few example astronomy photos taken by professionals on Astronomy Picture of the Day. Use the color, levels and background sky you see in their photos as a guideline. Chances are, the photos you see here will look great, no matter which display screen you view them on.  

Horsehead Nebula

This is because they have taken the precautions needed to ensure that their images are an accurate representation of scientific data, including screen calibration.  Many of these astrophotographers have dedicated calibration tools to help them keep their displays accurate.

I have had many issues with uneven sky backgrounds in the past, primarily due to the lack of using flat frames.

The dim monitors hide this messy background making the sky to appear a nice dark grey or black. There is value in viewing your images on a variety on screens to learn how to better process your images.  

I hope that this write-up has opened your eyes to the importance of screen calibration when processing astrophotography images.  

As for getting your night sky photos printed? I’ll save that for another post.

Watch my Astrophotography Image Processing Tutorial (Photoshop)

 

Related Tags

Astrophotography in the City

|Backyard|1 Comment

Saturday Night Under the Stars

Astrophotography in the City

Last weekend I posted a new video to my YouTube channel titled DSLR Astrophotography – A Night in the Backyard with my Camera. It is now Early-April, and we are in what amateur astrophotographers call “Galaxy Season”, as we transition from the Winter Constellations like Orion and Taurus, to the Summer Milky Way objects.  In between, there are some fantastic deep-sky objects to observe in the Spring Constellations Leo, Coma Berenices, and Bootes.

The forecast called for clear skies on that crisp, cold Saturday night in Southern Ontario, and I was ready to image some deep-sky objects with my camera and telescope.  After a late dinner, it was a race against the clock to photograph my first subject of the evening, the Waxing Crescent Moon. If you want to jump straight to the video, you can find it at the bottom of this post.

Live-View DSLR Through a Telescope

Using the Canon 70D’s live view screen for telescope observing

Crescent Moon Astrophotography

 

I barely had time to get the beautiful Waxing Crescent moon into my telescope’s eyepiece before it became obscured by the surrounding trees in my neighborhood!  I shot a live-view video of the moon (with Earthshine visible) with my Canon EOS 70D DSLR through the telescope.  This may be of interest to anyone wondering what the view is like through an 80mm refractor telescope.  You need an adapter to attach the camera to the telescope, which you can buy online here.

After I focused the Moon and experimented with different ISO settings and exposure lengths, I snapped a couple of shots before moving on with the rest of my night.  You can have a look at the equipment I use for astrophotography here.

 

Earthshine Moon

The sky from my backyard

Next, I wanted to provide some examples of the dark-sky quality from my backyard.  Living in the central part of town has its advantages, but dark skies are not one of them!  I experience heavy light pollution from all directions.  This makes using a light-pollution filter on my camera necessary for long exposures.  Currently, I use the IDAS LPS clip-in filter on my Canon Rebel Xsi DSLR.  This allows me to capture exposures of up to 5 minutes from my backyard.

 

Astrophotography in the City

The night sky from my backyard on April 9, 2016

 

The Big Dipper Asterism

Looking towards the Big Dipper in Ursa Major

Deep-Sky Target: Edge-On Spiral Galaxy in Coma Berenices

NGC 4565 – The Needle Galaxy

Once the moon had set, I promptly prepared my deep-sky astrophotography rig for a night’s worth of photons on my photography subject.  I settled on NGC 4565 – The Needle Galaxy because of it’s size, magnitude, and current location in our night sky.  The Needle Galaxy is an edge-on spiral galaxy that resides about 30-50 million lights years from Earth.  This handsome galaxy is the current photo in my 2016 RASC Observer’s Calendar hanging in my office at work, perhaps that is what gave me the idea!

Astrophotography in the City - Needle Galaxy from my backyard

NGC 4565 – The Needle Galaxy

Photographed on: April 9/10, 2016

Total Exposure Time: 54 Minutes (18 x 3 Min. Subs @ ISO 1600)
Mount: Sky-Watcher HEQ-5 Pro
Camera: Canon 450D (modified)
Telescope: Explore Scientific ED80 Triplet Apo

Guided with PHD Guiding
Stacked in Deep Sky Stacker
Processed in Adobe Photoshop CC

This interesting NGC object shows up rather small in my 80mm telescope, as many galaxies do.  A larger telescope with a focal length of 1000mm or more would be a better choice for this DSO.  I also had a bit of a challenging evening out the background colour of this image.  Flat frames would have made this issue much easier to deal with in post-processing.  With just under an hour of exposure time, it is safe to say that I will need to add more time to this image to bring out the colour and detail.


AstroBackyard on Youtube

I am completely blown away with the response to my YouTube Channel has received.  Thank you to everyone who has subscribed, I look forward to many new astrophotography videos in the future!

Beginner Advice:

Related Tags

Selective Processing for More Detail

Staying Inside – Image Processing

The unseasonably cold weather and precipitation we have experienced here in Southern Ontario have given me the perfect opportunity to go through my old astrophotography images and reprocess the data.  I have been advancing my image-processing skills by studying current astronomy images taken by the pros.

Being a creative professional myself, I have always understood and appreciated the power of inspiration. I am always interested in new image-processing techniques, Photoshop tutorials and new software that can enhance my work.  Through selective processing, I have been able to squeeze out the most amount of detail from my astro images.

Western Veil Nebula

The Western Veil Nebula – I reduced the stars to show more contrast in the nebula

My latest take on The Swan Nebula is my favorite version yet. Through selective processing, I was able to tame the background stars, while intensifying the gorgeous pinks and reds in the nebula itself.  

I also recently reprocessed my wide-field image of the Western Veil Nebula, with a focus on reducing star size, and overall image contrast and color. The “witch’s broom nebula” is a tough process, especially if you have to deal with a severe gradient behind all of those stars. After assessing the gradient in Photoshop, (mostly due to heavy light-pollution) I can easily even out the sky background using the Gradient Xterminator plugin.

I am quite pleased at my latest results of the Eagle Nebula as well. I went through my astrophotography folders from the past 4 years (like I said, it’s been cloudy!)  and found a set of almost 2 hours of frames on M16 that I had not previously used!  

I combined all of the data together from May 2012, and May 2013 in DeepSkyStacker to create an image with over 3 hours of exposure time.  I decided to keep the extremely wide-field view captured by my 80mm telescope, rather than cropping the photo around the nebula.

This image really benefited from the selective processing technique. By reducing the stars on a separate layer, I was able to keep all of the detail found in the nebula.

Eagle Nebula - 80mm Telescope

Wide field image of the Eagle Nebula with my 80mm telescope

Image Processing Techniques

One of the processing techniques I have been implementing into my photos is to process different elements of the image separately. By this, I mean to process the background, the stars and the nebulosity on their own.  

I am able to do this by selecting each element of the image and stretching the data without affecting the other areas. For example, I can boost the vibrance and saturation of the nebula or galaxy without adding additional noise to the background of space and stars.

As I have stated many times, I prefer to tame the stars in the image to be as small as possible. Normally, I would run the “make stars smaller” action to the entire image in Photoshop.

This actually starts to diminish the precious detail in your deep-sky object that you worked so hard to capture! Many other actions that are intended to correct issues with the background space and stars can take away from your subject as well.

You can also manually Remove the Stars Completely from your image using photoshop.

Swan Nebula - 8 Inch telescope

My latest version of the Swan Nebula

Selective Processing

There are several ways to accomplish the selective processing technique to your astronomy photos.  You can create multiple adjustment layers of your image in Photoshop, and apply the various actions to each element of the image on a separate layer.

I use the Select and Mask tool to refine my selections before applying effects. This ensures that each new adjustment layer is blended naturally into the final image.

 Once you have applied your desired settings applied to each layer, you can use layer masks to combine all aspects of the photograph into one.  This means you will likely have layers for:

  • The Background Space – With a balanced black-point set

  • The Background Stars – Small, sharp and with lots of accurate colour

  • The Brighter Stars – Soft, or with Diffraction Spikes and Color

  • The Deep-Sky Object – Full of luminance, color and detail

  • The Core or Brightest Area of the DSO – reduced to show detail, not blown out

Selective Processing - Astrophotography

Processing the nebulosity separately from the background stars in Photoshop

You can also process the selected elements of your images as separate documents.  Sometime I prefer to do this to really focus on achieving the best possible result for my focus area, without the temptation to poke around at another feature.  

Once you have processed each version of the image with your focus area maximized, you can then combine the images using layer masks.  The blending and layer masking is definitely the most delicate stage of the process.  You can really make a mess of an image by failing to inspect all areas of your image before flattening.

I find it helpful to use a reference image of your deep-sky target. This is the best way to make sure you have not overstretched your image data, and that your colors and details are an accurate portrayal of that particular deep sky wonder. I often look for inspiration on APOD!  

To stay connected with me and my latest astrophotography images, please follow my Facebook Page.  I hope you are all excited about the wonderful deep-sky targets that will be gracing our night sky the coming months, I sure am!

Resources:

Astrophotography for Beginners – The Basics

How to choose an Astrophotography Camera – My Advice

Top 5 Telescopes for Beginners – My Advice

Related Tags

Collimating a Newtonian Telescope

|Telescopes|2 Comments

Collimating a Newtonian telescope is something every backyard astronomer should experience.  In this post, I align my 8″ Orion Astrograph Newtonian for a night of astrophotography in the backyard.  My deep sky target is M101 – The Pinwheel Galaxy – in the constellation Ura Major.  With a proper alignment of the mirrors in this reflector, I should be able to capture a new portrait of the galaxy with my DSLR camera.

Spoiler – things do not go well.

My Newtonian Reflector is Ready for Spring

Collimating a newtonian reflector telescope

 

The clouds finally broke (to a certain degree) last Saturday night, and being the die-hard night-sky photographer that I am, I skipped out on all of the fun social activities taking place that night in exchange for a lonely time by myself under the stars.

Don’t get me wrong, there is nowhere I would rather be, but when things go horribly wrong, you begin to question your decision to stay home. On a positive note, I learned a little more about my equipment, and how to deal with the challenging and sometimes frustrating scenarios that come with deep-sky astrophotography.

Example photo using my Newtonian Reflector for Astrophotography:

Collimating a Newtonian Reflector

M51 – The Whirlpool Galaxy

Collimating a Newtonian Reflector

Orion 8″ f/4 Astrograph Reflector

While the sun was still up, I carefully collimated my Orion Astrograph to the best of my abilities.  The process of constantly collimating a Newtonian reflector is a big reason I generally prefer to use my apochromatic refractor.  That being said, once tuned-in, the light-soaking power of that fast 8″ mirror is hard to ignore.  Not to mention that this telescope has a focal length of 800mm compared to the wider 480mm in my Explore Scientific ED80.

The process of collimation is actually quite a simple process, once you know what you’re doing.  The hardest part is learning exactly what you are looking at when you position your eye over that open focuser tube.  Thankfully Sky and Telescope has an extremely helpful tutorial on their website, with the necessary diagrams for my brain to fully comprehend the ordeal.  (I am a visual learner – go figure!)  The diagram below was an integral part of my collimation success:

Collimation Diagram

The 3 Step Process outlined by Sky and Telescope‘s Nils Olof Carlin really helped simplify the process.  Like I mentioned earlier, these steps are a lot easier to take once you understand each part of the telescope from the diagram above.

Step 1: Center the secondary mirror on the axis of the focuser drawtube

Step 2: Aim the eyepiece at the center of the primary mirror

Step 3: Center your primary mirror’s sweet spot in the eyepiece’s field of view.

It’s Galaxy Season!

Thanks to some suggestions on my Facebook page, I narrowed down my imaging choice to Bode’s Galaxy and the Cigar Galaxy in Ursa Major (M81, M82).  The reason for this choice is that they are in a great position in the Northern sky from my latitude right now.

The lack of interesting nebulae and galaxies in the Southeast also swayed my decision.  I have imaged these two galaxies before with the Newtonian, but that was before modifying my Canon Xsi that can now pick up more of the pink nebulosity.

Top 8 Deep-Sky Targets for Galaxy Season

Markarian's Chain in Virgo Cluster

Markarian’s Chain

Where it all went wrong

A thick cloud cover put a lid on my imaging until about midnight on Saturday.  I studied the weather forecast and satellite animations carefully, and sure enough, the early spring constellations began to appear.  I napped for two hours beforehand, to make sure I had enough energy to image late into the night.  While carrying out the alignment process of my Sky-watcher mount, I noticed that the guide stars appeared sharp and crisp.  They even had the reassuring, round donut shape when unfocused. Clearly, my collimation session earlier had paid off!

Once I was polar and star aligned, I directed the tracking mount towards M81 – Bode’s Galaxy in Ursa Major.  There it was in the eyepiece, along with its close companion M82.  A rewarding view, even in the heart of the city.  I so rarely view these objects visually, I spent almost 5 minutes allowing my eyes to adjust and get a deeper view.

Okay, so far so good.  Time to get focused, and start imaging.  I framed the objects perfectly within my field of view and achieved sharp focus by using the handy frame and focus tab within BackyardEOS.  The last piece of the puzzle was to get PHD calibrated, and guiding on my object.

Orion Newtonian Reflector

My 8″ Orion Newtonian set up in the backyard

Follow AstroBackyard in Instagram

PHD Guiding Issues When Imaging Near Polaris

“Star Did Not Move Enough” Error

I have heard from fellow astrophotographers about PHD guiding not calibrating when imaging close to the North Star, Polaris.  I have experienced this first hand a number of times myself, including on Saturday night.  The West calibration step continued to fail, displaying the “Star Did Not Move Enough” error message.

I fiddled with multiple settings within the PHD Guiding “Brain” button, including the much-debated calibration-steps parameter.  I also closed down PHD, and unplugged the autoguiding connection cable, to rule that out.  I have lost countless hours under moonless, clear skies to this scenario over the last 4 years.  I desperately need to come up with a permanent solution for this problem.  I had no choice but to switch targets, and hope that PHD would began doing what it was designed to do.  Autoguiding.  Luckily, I moved to a target in the same region of the sky that would also lend itself well to my current configuration.

I desperately need to come up with a permanent solution for this problem.  I had no choice but to switch targets, and hope that PHD would began doing what it was designed to do.  Autoguiding.  Luckily, I moved to a target in the same region of the sky that would also lend itself well to my current configuration.

M101 – The Pinwheel Galaxy

Sure enough, PHD calibrated itself, and began guiding on my subject.  It was now 2:00am, and I took my first 3 minute sub at 2:09am.  That’s 2 hours of frustration and wasted clear skies!  Patience and a positive attitude is certainly needed for this hobby, but taking action to not repeat past mistakes is even more important.  I will have to research alternatives to PHD guiding, or at least narrow down exactly what is going wrong when trying to calibrate PHD close to Polaris.  Once the graph looked steady, I set BackyardEOS to take 30, 210 second exposures on M101 and went to bed.

I will have to research alternatives to PHD guiding, or at least narrow down exactly what is going wrong when trying to calibrate PHD close to Polaris.  Once the graph looked steady, I set BackyardEOS to take 30, 210-second exposures on M101 and went to bed.

 

PHD Guiding Calibration

East Calibration – Finally! And a Steady Graph

 

Here’s the kicker.  Something wasn’t right with my guiding on M101 either.  I am not sure if it was because of the settings I had changed when trying to calibrate earlier, a conflict with the dithering I enabled within BackyardEOS, or a third unknown factor.  Either way, I captured 30 jerky frames of M101 while I slept.

I didn’t inspect the frames until I woke up again at 4:00am to review my results.  It was at this point that I realized that this blog post would not be a success story.

 

Autoguiding Issues

 

Conclusion – I had a Rough Night!

I came up empty-handed, even after having such a well-planned out night with all my bases covered.  However, I went through the process of collimating a Newtonian telescope again, and now feel comfortable using this telescope more often for astrophotography.

I also came to the conclusion that I need to seriously address the on-going issues I have been having with PHD guiding to avoid more wasted nights in the future.  Thank you for your continued support of my astrophotography journey, and if you have any solutions for me, I would love to hear them!

Update: I now use PHD2 Guiding – and My Issues have been sorted

Related Tags