Skip to Content

Equatorial Telescope Mount

Choosing a Portable Power Station for Astrophotography

|Portable Power|17 Comments

One of the most common questions I get is “what portable power source do you use for astrophotography”. This is a hot topic in the astrophotography community, and there are many options to consider for powering your gear at night. 

When deciding on an off-grid power station, you need to think about things like battery life, power output, power input charging, and the number and types of output ports. There is no one-size-fits-all option, as budget and weight come into play as you explore the higher-end options.  

If you’ve ever browsed the Portable Power Stations on Amazon, you’ll know that there are literally hundreds of options to choose from. However, choosing the right one for your telescope and astrophotography purposes requires a slightly different approach.

portable power stations

Which portable power station is best for astrophotography in the field?

Whether charging via solar panels when you are off-grid is important to you, or you need a unit that can save your butt during a power outage – there is an option for you. If you enjoying comparing features and prices, selecting the best portable power station for your astrophotography needs is actually kind of fun.

In this article, I’ll describe my experiences using a premium portable power station, and provide a number of alternatives suggested by astrophotographers around the world. 

Feel free to leave a comment describing the portable power station you use, to help create a complete resource for astrophotographers. Just like everything else in this hobby, there are many options to choose from at various price points. 

The Need for a Portable Power Station

When taking pictures of space from the backyard, I plug into household AC power, but what about when I travel to a dark sky location? Milky Way photography with a DSLR and star tracker is one thing, but running a robust deep-sky imaging kit away from home is another.

There is a good chance, that if you’re an amateur astrophotographer, at some point you will need to invest in a quality portable power station. Something that can reliably power your astronomy telescope and accessories throughout the night.

astronomy camping

Portable power stations are essential while camping. 

Visual observers sometimes need power for a goto computerized mount and maybe a few dew heaters, but astrophotographers? We need to power anywhere from 3 to 17 devices (or more) and if even one of them fails, you can kiss your precious picture goodbye.

Thankfully, today’s portable power stations are equipped with many output ports, including dedicated AC and DC ports and multiple USB types. Some of them even include integrated wireless charging areas to charge your phone. 

Here are some of the potential devices you will need to power on your astrophotography setup:

Powered Devices for Astrophotography

battery pack for telescope

In the following video, I provide an overview and real-world experiences using the brand new Anker 757 Portable Power Station. Anker asked that I provide an “astrophotographer’s perspective” of their new mobile power station.

This is a great option to consider if you need a serious power station that can handle a wide variety of devices. If you are running a simple setup in the field, this type of portable power may be overkill for your astrophotography needs.

This large 1500W power station can power a robust setup for multiple nights.

Portable Power Station vs. a DIY Solution

The Anker 757 Portable Power Station is a fantastic unit, capable of powering several devices for an extended period of time. However, many amateur astrophotographers believe that it is more cost-effective to just “build your own” DIY power supply using a deep cycle marine battery. 

There are some serious cost savings if you take this route, and there are many great how-to tutorials available online to build one. To build one you will need:

  • A sealed deep cycle marine batteries
  • DC to AC power inverter
  • Smart Charger/Maintainer
  • Inverter Cable

Unfortunately for me, I have not had much luck with a DIY deep cycle marine battery unit (yes, I built one several years ago). My poor experience taking this route is likely due to the fact that I have zero experience in the field of electrical or mechanical engineering. It seems that I am the exception in the astrophotography crowd. 

As I mentioned in the video, bulletproof reliability is critical to me, and I am willing to pay a little extra for it. The all-in-one package that Anker has created is impressive and is a smart option for anyone willing to pay the added cost. 

DIY power station

Here is an example of someone who built their own portable power station using a mix of components. If you’re up to the task of taking on projects like this, you can really save some money. Again, this is beyond my personal skill set, but it’s an option.

Video: How to Make a Portable Power Station

 

A Portable Power Station for your Telescope

To me, the most important feature of a portable power station for astrophotography is reliability. It also has to have enough power to go at least an entire night (or 2) before needing to be charged.

It also needs to have enough output ports for all of the astrophotography accessories I need to plug in from USB-powered dew-heaters to my laptop charger.

If the portable power station is not up to the task of providing a constant source of power to my rig for an entire night without interruption, it’s useless to me. Even a brief outage means I lose the connection to my telescope mount, the autoguiding goes nuts, and I squander a precious clear sky.

I’d rather run a 200-foot extension cord than risk a battery that flickers in and out. I’ve had this happen before, and it’s absolutely infuriating. The good news is, that most of the astrophotography gear we all use does not consume a lot of power, with a few exceptions of course. 

Anker 757 PowerHouse

I tested Anker’s flagship 1500 Watt power station to run my deep-sky astrophotography rig, the 757 PowerHouse. It’s pretty heavy (44 pounds), but the built-in handles make it a lot more manageable.

The 757 uses premium LFP (LiFePO4) batteries, and it can charge from 0% to 80% in about an hour. It’s a slick package made with an automotive-grade aluminum frame. It’s vibration and temperature resistant, and here’s an important one, it’s silent.

The Anker 757 PowerHouse is a 1500W (1228Wh) power station with LPF (LiFeP04) batteries and 13 ports to connect various devices. 

portable battery for astrophotography

There are 13 ports in total to power everything you need for your astrophotography imaging rig. There is 1 “car-socket style” DC port which you might use for your computerized telescope mount.

I still use a DC connection for my Sky-Watcher EQ-6 Pro equatorial mount, so I was pleased to see it there. The rest of my astrophotography equipment is powered by the AC and USB outputs on the power station.

I like to plug in things like a 12V 4A power supply for my ASIAIR Plus, or Celestron NexStar 8SE into the AC output ports. The USB-A ports are perfect for my USB-powered dew heater bands, although you’ll need to make sure that you have long cords to reach the power station from the objective of the telescope.

Those of you with laptops, cooled dedicated astronomy cameras, and autofocusers will have more than enough power to play with for about 2 straight nights (depending on usage and temperature). 

When running an advanced astrophotography setup including my Sky-Watcher EQ8-R Pro mount, cooled camera, and dew heaters, the 757 PowerHouse had 45% power left after 1 full night.

One thing I should note – if you’re using the power station to power your rig, do not use “power-saving mode”. This is designed to turn off when your device is fully charged, which is not applicable when powering your equatorial mount for an entire night.

Anker 757 Power Station Review

Anker 757 Power Station Specs

  • Rated Capacity: 51.2V 24000mAh / 1228.8Wh
  • AC Input Voltage: 100-120V~ 12A Max, 50Hz / 60Hz
  • AC Input Power (Charging): 1000W Max
  • AC Input Power (Bypass Mode): 1440W Max
  • XT60 Input: 11-30V⎓ 10A (300W Max)
  • USB-C Output 1: 5V⎓3A/ 9V⎓3A/ 15V⎓3A/ 20V⎓3A 20V⎓5A (100W Max)
  • USB-C Output 2: 5V⎓3A/ 9V⎓3A/ 15V⎓3A/ 20V⎓3A (60W Max)
  • AC Output (Bypass Mode): 100-120V~ 12A Max, 50Hz/60Hz, 1440W Max
  • AC Output (Inverter Mode): 110V~ 13.64A, 50Hz/60Hz, 1500W Max
  • USB-A Output: 5V⎓2.4A ( 2.4A Max Per Port )
  • Car Charger Output: 12V⎓10A
  • Discharging Temperature: -4°F-104°F / -20°C-40°C
  • Charging Temperature: 32°F-104°F / 0°C-40°C

The light bar is handy to have when you’re off-grid, and I am happy to see that it is a warm color temperature and that it is soft. A lot of the lights on portable battery packs use hyper-white, blinding LEDs. This one is a warm, orange color. 

However, I wish that there was a red light option to protect your night vision even better. I also wish that clicking the display button for a second time (when it’s on) turned it off, but it doesn’t. So, you may want to cover this up with tape if you are at a star party or a gathering where any amount of light needs to be shielded.

The manual states that the operating temperatures should be between 32 and 100 Fahrenheit – or 0 – 40 Celsius. That definitely puts a limit on the times of year you can use this power station, and it’s something to consider.

astrobackyard review

I use a portable power station to run my Celestron NexStar 8SE while camping.

Smaller Options for Astrophotography

Jackery Explorer 500

If you’re on a budget and prefer to keep your power station light and portable, the Jackery Explorer 500 Portable Power Station is a great option to consider. This power station weighs just 13 pounds and is one of the lightest and most portable rechargeable lithium battery generators on the market.

Jackery Explorer 500

Jackery Explorer 500

The Jackery Explorer 500 has a 518 watt-hour (24Ah, 21.6V) lithium-ion battery pack and a pure sine wave inverter. It includes 1 AC outlet, 3 USB-A ports, 2 DC ports, and 1 car socket. Jackery also offers a smaller version with less wattage (Explorer 240) for maximum portability.

Bluetti EB3A Solar Generator

The Bluetti EB3A is another portable power station to consider. This one only weighs 10 pounds, yet it has a 268.8Wh capacity and features an impressive 9 output ports. This unit was named the “Best value portable power station” on CNET’s list of Best Portable Power Stations

This power station can be charged using the optional Bluetti solar panel, and even has a dedicated mobile app to monitor battery levels and output information. The Bluetti EB3A is an impressive unit that I hope to experience firsthand in the future.

Bluetti EB3A

Bluetti EB3A

If you need a lot of power, have a look at the Bluetti AC200P. This monster weighs 60 pounds and offers a whopping 2000 watts of power!

Togo Power Advance 350

The Togo Power Advance 350 was specifically designed for charging laptops, mini-cooler, drone, and other outdoor electronics. With 330W, it has more than enough power to handle running your astronomy gear for an entire night. 

The AC pure Sine Wave outputs will provide clean power to your devices. It features 8 output ports in total, including 2 handy 12V 10A DC ports for powering your astrophotography devices like the ZWO ASIAIR, and/or dedicated astronomy camera.

This unit can be charged using a solar panel in about 5-8 hours on the road, and also features a 10w wireless charging area for your smartphone. 

Togo Power 346Wh

Togo Power Advance 350

Final Thoughts

There have never been so many great portable power stations available to choose from. The price, wattage, and the number of ports on these units vary widely. The Anker 757 PowerHouse is an excellent choice, in my opinion, if you’re willing to pay extra for a heavy-duty power station. 

The car battery booster-style packs I purchased from the hardware store in the past, were a huge letdown. All of them would hold less and less of a charge over time, and would unexpectedly shut off in the middle of an imaging session. Thankfully, portable power stations have come a long way since then, and are much more reliable. 

I know that a lot of you have built your own DIY power supply consisting of a marine battery, and an inverter. If you enjoy that type of thing (and know what you’re doing), by all means, go for it. You’ll likely save some money and get to work on a fun project. 

If you are more comfortable in the office than in the shop (like me), one of the many fantastic pre-built portable power stations is likely a better fit, and worth the added cost.

Be sure to choose a unit that has dedicated output ports for the astrophotography equipment you use most, and that it can reliably power your rig for at least 1 entire night before requiring a recharge. 

For now, I’ll continue using the Anker 757 PowerHouse on my astrophotography and camping adventures, and plan on getting a lot of use out of it for several years. I hope that this article was useful to you and that you have a better understanding of the options available in 2022. 

portable power station for telescope

Even More Options to Consider

Here is a list of options provided by the AstroBackyard community on YouTube and Facebook:

Related Tags

Sky-Watcher EQ6-R Pro Review

|Equipment|36 Comments

The Sky-Watcher EQ6-R Pro is a computerized equatorial telescope mount with GoTo capabilities. This equatorial (EQ) mount is capable of providing precise, accurate tracking of the night sky, and is suitable for long-exposure astrophotography. 

The core specifications of this equatorial mount include having a built-in ST-4 autoguider port, a payload capacity of 44 pounds, and a SynScan computer hand controller with an extensive database of objects. 

I have been using the Sky-Watcher EQ6-R Pro telescope mount since October 2018, and have used it to capture several deep sky images of nebulae, galaxies, and star clusters in space. In this post, I’ll share some of my favorite features of this EQ mount that I have experienced over several imaging sessions in the backyard.

astrophotography images

Some of my favorite photos captured using the EQ6-R Pro. 

Whether you already own the EQ6-R Pro and are looking to tap into more of its features, or are trying to decide which equatorial mount is best for your visual observation or astrophotography goals, this article should offer up some useful input from someone who’s been in your shoes. 

Related Video: My first run with the Sky-Watcher EQ6-R Pro in the backyard

Sky-Watcher EQ6-R Pro telescope mount

Sky-Watcher EQ6-R Pro Review

Before we dive into some of the interesting features you may not have known about, here is an overview of exactly what the “EQ6” is capable of. As a preface, it’s worth noting that I use this mount for astrophotography exclusively, and I am in the northern hemisphere.

For those in the southern hemisphere, the process is very similar all around, aside from polar aligning the mount with the south celestial pole (SCP).

Before stepping up to the EQ6-R, I used a number of intermediate-level astrophotography mounts, including the slightly smaller HEQ5 Pro SynScan model. 

Sky-Watcher EQ6-R Pro

The Basics

The EQ6-R Pro includes a SynScan hand controller with an LCD display that gives you control its features and basic functions. The left and right keys on the keypad control the Right Ascension (RA) axis, while the up and down arrows are used to control the Declination (DEC) axis. 

You can control the slew speed by selecting the RATE shortcut button (2) on the keypad, as it is useful to make large movements at a high speed, and subtle adjustments using a slow speed. The Sky-Watcher EQ6-R Pro has 10 slew speeds for complete control over the movement of each axis. 

Before powering up the EQ6-R, your telescope should be in the home position. This means that the EQ head is leveled on the tripod, and the RA axis is pointed towards the north celestial pole (NCP). The counterweight should be at its lowest position, and the telescope should be pointing towards the NCP.  You can then turn on the mount and select the operation mode. 

For those interested in astrophotography, you will only ever want to use the mount in EQ mode. 

Iris Nebula

The Iris Nebula captured using the EQ6-R Pro and RedCat 71.

With the RA and DEC clutches locked, and counterweight(s) attached, you can mount your telescope on top of the EQ head. This is accomplished by fastening the mounting plate of your telescope to the saddle, which accepts both D and V-style mounting plates.

If you are looking for a nice upgrade, the Dual EQ6R-Pro XL collar was redesigned to fit the EQ6R-Pro and features two large locking hand knobs and spring-loaded jaws.

EQ6-R adm saddle upgrade

Dual EQ6R-Pro XL collar

Getting Started

Once the SynScan system has initialized, you can enter in the geographic coordinates of your observing site.

This involves entering the latitude and longitude coordinates of your current location using the cursor on the LCD display and the keypad. Then, you will enter your current time zone, which for me, happens to be UTC -4 in southern Ontario. 

You can also enter in your current elevation, which is used for atmospheric refraction compensation (generally, the higher your elevation, the better). Next is setting the current date and time, and whether you are currently on daylight savings time.  

Once all of these important details have been entered (so the mount understands what is available in the sky from your location), you reach the mount alignment process, with the “Begin Alignment” dialog served up on the LCD screen. 

SynScan Hand Controller

The SynScan Hand Controller set to EQ Mode. 

Use the “Park” Feature

This simple, yet useful feature automatically aligns your telescope mount in both axes at the beginning of your imaging session. It is not exclusive to the EQ6-R Pro, yet it is easy to miss if you don’t follow the instructions in the manual on your first few runs. 

This feature is located under the “Utility Function” menu and asks you to turn off the mount after the park position has been confirmed. The next time you turn the mount on, you will see a dialog on the LCD display asking if you would like to start from the park position.

This is a handy feature that I did not personally take advantage of for the first few months of ownership with the mount. It is nice to confirm the home position when setting up, especially before beginning your polar alignment process.

The EQ6-R is Easy to Polar Align

Whether you use the built-in polar scope with the illuminated reticle or use a QHY PoleMaster device, polar aligning the EQ6-R is a breeze. 

This is largely due to the fact that the EQ6-6 includes large, Alt/Az adjustment bolts with comfortable handles. Fine-tuning the polar axis of this equatorial telescope mount is possible thanks to these convenient controls.

The built-in polar finder scope with an illuminated reticle allows you to accurately polar align the mount without the need for additional software or accessories. You can either use a third-party mobile app like “Polar Finder” to find out the current position of Polaris or simply use the information displayed on the SynScan hand controller. 

The SynScan hand controller displays the position of Polaris in polar scopes’ field of view (FOV). You need to imagine that the large circle in the FOV of the polar scope as a clock’s face with 12:00 sitting at the top.

Then, it’s simply a matter of adjusting the Alt/Az bolts of the mount to place Polaris in the “HH:MM” position provided.

Using a PoleMaster with the EQ6-R

If you don’t like getting underneath the polar scope for a real-time view of the NCP or SCP, the QHY PoleMaster is a great option. This electronic polar scope uses a small camera to display the region surrounding the north (or south) celestial pole. 

Using the live feed through the camera, you can fine-tune your Alt/Az adjustments in a very precise manner. The PoleMaster requires the appropriate adapter (this is the one you need) to fasten it to the polar axis.

QHY PoleMaster Adapter

Fastening the PoleMaster to the EQ6-R using the necessary adapter.

You Can Improve the Alignment Accuracy

Before running a star alignment routine, make sure that your telescope is well balanced, and that there are no loose cables that could get caught and snag on the mount. 

The alignment routine involves choosing a bright, named star from the database and centering it in your telescope eyepiece or camera. The LCD screen displays “Choose 1st Star”, at which point you can cycle through the list to find a star that is not blocked by any obstructions from your location and press enter.

A word of caution here, once you hit enter, the mount will start to slew to the object immediately. 

From here, it’s a matter of using the arrow buttons on the keypad to center the star. Remember, you can change the slew speed at any time by pushing the “Rate” button and setting the value higher or lower.

It is often useful to leverage a finder scope on your telescope when slewing to your first alignment star, as it has a much wider field of view than your primary telescope and makes finding the first star easier. 

When running through a star alignment routine, it is important to consistently center the alignment star in the eyepiece or camera’s FOV. It is beneficial to use a reticle eyepiece with a small FOV.

Personally, I use the camera’s FOV and center the star on my DSLR display screen (with grid-enabled), or with a cross-hair overlay in my camera control software (Astro Photography Tool).

You can run a 1,2, or 3-star alignment to improve the pointing accuracy of the telescope. This is very important when it comes to photographing deep-sky objects that are nearly invisible until a long exposure image is collected. 

Avoid Errors due to Mechanical Backlash

You can improve your alignment accuracy by avoiding errors due to mechanical backlash. Backlash is present in all equatorial telescope mounts and does not affect your observing enjoyment, or your long exposure images when autoguiding is employed.

To avoid introducing alignment error caused by backlash, center the alignment star ending with UP and RIGHT directions from the keypad. If you overshoot the star using this method, use LEFT and DOWN to bring the star back down the FOV and try again.

Computerized Telescope Mount

The Stepper Motors are Quiet

If you haven’t used this particular mount firsthand, you may be wondering what the EQ6-R sounds like while it is slewing. I have heard many astrophotography mounts over the years, and this one is impressively quiet. 

This mount uses stepper motors with a 1.8° step angle and 64 micro steps driven. This technical design aspect results in a quieter mount than on using servo motors.

This means that even at the maximum slew speed (9X), the mount emits a modest hum that will not wake up your neighbors. While the telescope mount is tracking, it is completely silent. It’s only when you move the RA or DEC axis at top speed that you hear a noise.

Compared to other equatorial telescope mounts I have used, the audible sound the EQ6-R Pro makes is more than acceptable. When you are partaking in a hobby that takes place (alone) outside at night, avoiding loud or unusual noises when possible is always a good idea.

In contrast, the Celestron CGX-L computerized mount is noticeably loud while slewing at top speed. If this mount is being used in a closed observatory, it’s not an issue. However, I set up my equipment in a city neighborhood backyard. Depending on the time of night, I hesitate slewing to a new target because of this trait. 

The Autoguiding Performance is Impressive

The Sky-Watcher EQ6-R Pro delivers impressive results when the built-in autoguider port is leveraged. Over the years I have maximized the tracking capabilities of my astrophotography mounts by using an auxiliary guide scope and camera to autoguide using free software called PHD2 guiding

The EQ6-R Pro allows you to set change the default auto guide speed of the mount of 0.5X to 0.75X or 1.0X in the setup menu.  

I have experimented using a guiding rate of 1.0X and saw little improvement to my guiding graph in PHD2 guiding over the default speed of 0.5X. The point is, you have the option of adjusting this setting if the need calls for it, and it’s a feature I’ve only recently tapped into on the EQ6-R Pro.

For a real-life example of the autoguiding performance, you can expect with this mount, have a look at the screenshot below. The guiding graph shows that my total RMS error is 0.63″. Generally, a total RMS error of under 1-second means that you can expect pinpoint stars in your long exposure images.

EQ6-R autoguiding graph

My autoguiding graph in PHD2 guiding using the Sky-Watcher EQ6-R Pro SynScan mount. 

The Mount is Heavier Than it Looks

When it comes to equatorial mounts for astrophotography, being heavy is a good thing. However, I think some people that receive their EQ6-R for the first time may be a little surprised at how heavy the EQ6-R actually is (I was).

The weight of the EQ head is 38 lbs on its own, and the tripod adds another 16.5 lbs. Add in two 11-lb counterweights, and you’ve got a telescope rig that weighs 76.6 pounds and is not going anywhere for a while.

Luckily, the EQ head includes a useful carry handle that I have certainly put to good use. Also, the supplied counterweight bar is retractable, which makes transporting the mount out the door of my garage a little easier. 

mount specifications

I used to carry my Sky-Watcher HEQ5 Pro SynScan around the yard with the telescope and counterweight attached. It was heavy and awkward, but manageable.

This is not possible with the EQ6-R, which is understandable considering the increased payload capacity (44-lbs) of the mount. To transport the Sky-Watcher EQ6-R from my detached garage to the yard, I must remove the counterweights and the telescope first.

It’s possible to lift the tripod with the EQ head attached (54.5 lbs), but this is likely too heavy for most folks. The good news is, this heavy profile means that accidentally bumping the polar alignment out of position by kicking a tripod leg is unlikely. Smaller, ultra-portable mounts like the iOptron SkyGuider Pro do not share this quality. 

You Don’t Need to “Mod” the Mount

If you’re a tinkerer, I get it. It may be tempting to you to open up the EQ mount head and take a look. I would advise against this personally, as you may do more harm than good.

I’ve seen a number of posts and videos discussing “belt-mods” and “hyper-tuning” Sky-Watcher NEQ6 and EQ6-R mounts. Personally, I wouldn’t recommend opening up the mount in hopes of tweaking performance, even if the underlying mechanics are straightforward to you.

In my experience, the Sky-Watcher EQ6-R can track accurately for 10-minute exposures (or longer) without any re-greasing or modifications to the worm gears when autoguiding is leveraged.

I suggest spending the time to get your balance and polar alignment spot-on before blaming the mount for bad tracking. It’s easy to get caught up in scrutinizing the mechanical backlash and periodic error present in the mount.

If you do dive into these advanced adjustments, you better be mechanically minded and ready to invest a “minimum of four hours” for a typical belt modification. 

astrophotography telescope

The EQ6-R with a Sky-Watcher Esprit 100 ED APO attached.

The SynScan Hand Controller gives you Extensive Options

The included SynScan hand controller includes an impressive 42,000+ object database, with almost every possible target you could ever want to observe or photograph.

The Messier object list gets a lot of use for amateur astronomers in the Northern Hemisphere, while the NGC catalog is great for pointing the telescope at more obscure nebulae and star clusters.

The database also includes IC and Caldwell catalogs, which covers most of the noteworthy subjects in the night sky. I only wish the database included the Sharpless catalog, for items such as the Tulip Nebula with no alternative designation.

To slew to these objects, it may be better to control the EQ6-R using your PC using a supplementary PC-Link cable along with the appropriate ASCOM drivers and software.

I use the hand controller to align and center my target. After a quick polar alignment routine using the QHY PoleMaster, the pointing accuracy of the mount is spot-on using just a 1-star alignment.

After you’re aligned and ready to observe or image an object in space, you can start by choosing a target using the “OBJECT” shortcut key, which contains the following object list:

  • Named Stars
  • Solar System
  • NGC Catalog
  • IC Catalog
  • Messier Catalog
  • Caldwell Catalog
  • SAO Catalog
  • Double Stars
  • Variable Stars
  • User Object
  • Deep Sky Tour

The deep sky tour is a very cool feature for visual observation sessions. Imagine a star party or public outreach event where you want to have the best list of targets at the ready.

This feature generates a list of the most famous deep-sky objects that appear in the current night sky overhead. You simply go through the list and pick them off one by one.

The Periodic Error Correction (PEC) Feature

Periodic tracking error is present in all equatorial telescope mounts, and is due to the design of the internal gears. The Sky-Watcher EQ6-R includes a periodic error correction (PEC) function to help correct this.

The PEC training procedure requires that you first polar align and star align the telescope mount. Then, slew to a star close to the celestial equator, and center it in the telescope eyepiece or imaging camera.

Then, navigate to the Utility Function > PEC Training mode and press enter. From here you can select the speed you would like to use for PEC training. The Sky-Watcher SynScan manual suggests using 0.125X sidereal rate for wider FOV telescopes such as the Esprit 100 ED APO.

After selecting the speed using the “1” or “2” keys, the screen will then start to display the elapsed time of the PEC training routine. Now, your job is to keep the star centered in the FOV using the left and right direction keys on the hand controller.

Once the PEC training routine has completed, the elapsed time will stop. Noe, you can select “PEC+Sidereal” as a tracking speed in the Setup menu. It is recommended to wait for at least one PEC training reply cycle to complete before you start taking your images.

Sky-Watcher SynScan Specifications

  • Object Catalog: Messier Catalog, NGC, SAO, Caldwell, Double Star, Variable Star, Named Star, Planets
  • Pointing Accuracy: Up to 5 arc-minutes RMS
  • Tracking Rate: Sidereal Rate, Solar Rate, Lunar Rate
  • PEC: PPEC (permanent PEC)
  • Database: 42,000+ Objects
  • LCD: 18 Characters X 2 Lines (adjustable contrast and backlight)
  • Keypad: Rubber with adjustable backlight
  • GPS: SynScan GPS Modular (Optional)
  • PC Connection: USB or RS-232X
  • Power Output: Power Supply Voltage – 0.7V, Max. 100mA current output

Power Supply for the Sky-Watcher EQ6-R Pro

As one Cloudy Nights forum member put it, the Sky-Watcher EQ6-R Pro can get “cranky” if the right power supply is not used. I have experienced this issue myself, when I used an AC to DC power adapter that did not provide a minimum 4 amps of power.

These days, I use a 12V AC/DC adapter with 6 amps to power the EQ6-R when plugged in at home. Here is a picture of the exact AC/DC adapter I use with the EQ6-R, and here is a link to it on Amazon. Others have found the Pyramid PS9KX 5 Amp power supply to work well with this mount. 

Power supply for EQ6-R Pro

The AC/DC adapter I use to power the EQ6-R Pro mount from home. 

I often plug the DC power port into my portable power station to take my deep-sky imaging setup on the road. I currently use an Anker 757 PowerHouse to run my imaging rig while camping off-grid. 

Final Thoughts

As you may have noticed, there is a lot to cover when discussing all of the features of the Sky-Watcher EQ6-R Pro SynScan computerized telescope mount. The very first night I used the EQ6-R, I captured one of my favorite astrophotography images to date, and I knew I was in for a long relationship with this mount. 

A reliable equatorial mount is the foundation of every great deep sky astrophotography kit, and the EQ6-R is a worthy investment for those looking for a stable, long-term solution for long-exposure imaging.

From my early days with the HEQ5 Pro to my latest session in the backyard with the EQ6, I’ve been extremely satisfied with the user experience and performance of Sky-Watcher’s affordable equatorial telescope mounts. 

astrophotography telescope mount

Pros:

  • Fantastic Tracking when Autoguiding Used
  • Quiet Stepper Motors even Slewing at 9X
  • Easy to Polar Align
  • Built-In PEC Training Feature

Cons:

  • Heavier Than it Looks
  • Intermediate Level Mount with Price to Match
  • Power Supply must be Correct or will Act Up

My Current Sky-Watcher EQ6-R Pro Setup (2022)

astrophotography telescope

  1. ZWO ASI2400MC Pro
  2. Optolong L-eXtreme Filter
  3. ZWO ASIAIR Plus
  4. ZWO ASI120MM Mini
  5. William Optics Uniguide 50
  6. William Optics RedCat 71
  7. Sky-Watcher EQ6-R Pro

What Others Have Said:

“This mount is simply amazing. It is robust and tracks very well. I was taking 5-minute subs with no star trails. It is built like a tank and handles my Meade 5″ refractor with ease. The stepper motors are quiet. It’s simply a joy to use and I highly recommend it. The price is well worth it” – James S. on HPS website

“This mount is a tank. I have been doing astrophotography for several years using a lighter weight mount but I was ready to setup up to a heavier payload mount and I am very pleased.” – Ray on HPS website

twitter review

The Sky-Watcher EQ6-R Pro is Available at OPT

EQ6-R Pro Review

Useful Resources:

Do you use the Sky-Watcher EQ6-R Pro for astrophotography? If so, let me know your experiences with it in the comments. To stay up to date with my latest adventures in the backyard, be sure to subscribe to my newsletter. Until next time, clear skies!

Related Tags