Skip to Content

Celestron Telescopes

How To Photograph the Planet Jupiter

|Planets|2 Comments

I’ll get straight to the point. I’m going to walk you through how I took a detailed picture of the planet Jupiter through my telescope.

Compared to photographing deep-sky objects, like galaxies and nebulae like I normally do, photographing planets is a breath of fresh air.

I am not a planetary imaging expert by any means, but I will share the simple steps I used to get results like the one below. The process involves recording short videos of the planet through my telescope and extracting the best image frames from the video for stacking. 

On August 19, Jupiter was at opposition. This means that Jupiter was opposite the Sun (with Earth sitting between both objects). The gas giant was at its brightest and closest to Earth for the year, and I was lucky enough to have a clear sky that night. 

Jupiter astrophotography

The Planet Jupiter through my telescope.

While I am happy with my latest photo, I am itching to give it another shot. I’ll attempt to photograph Jupiter again soon, under more favorable weather conditions, to see if I can capture a clearer view of the planet’s surface.

High magnification planetary astrophotography can be heavily influenced by atmospheric conditions and elevation. This can make or break your image, and unfortunately, it’s completely out of your control. 

However, unlike deep-sky astrophotography, light pollution and the current moon phase do not negatively affect the experience in any way. Taking amazing images of the planet Jupiter is possible from just about anywhere in the world. 

Video

In the video below, you’ll see the camera and telescope I used to photograph Jupiter, along with real-time video footage of the planet through my telescope. I cover the astrophotography equipment used, and some simple tips for photographing Jupiter up-close. 

It was a memorable night in the backyard, and seeing Jupiter in real-time on the night of opposition was a real treat. You may notice how poor the ‘seeing’ is during my imaging session. This is a common occurrence when photographing planets, but there are some clever ways to overcome this scenario in post-processing.

Planetary Astrophotography

The term astrophotography encompasses a broad spectrum of night sky photography. You can think of Milky Way nightscapes as the ‘ultra-wide’ end of the spectrum, and planetary imaging as the ‘extreme close-up’ end on the other side.

It’s a common misconception that the magnification or ‘zoom’ is the be-all-end-all measure of a telescope, which is 99% false. But when it comes to taking pictures of planets up-close, it certainly comes in handy.

The Early Days

My first interest in astrophotography, like many people, was to photograph the brightest objects in the sky that I could see with my naked eye. I knew where and how to find the moon and the planets, and I wanted to see and photograph them up close.

One of the first things I did when I got my new telescope was to look at Jupiter and it was life-changing; the cloud bands, the great red spot, the Galilean moons orbiting the planet. There it was, in real-time!

But after I observed the gas giant through my telescope and both eyepieces, I needed more detail. This new interest turned into a (healthy?) obsession causing me to go deeper, both literally and figuratively.

Entering Deep Space

I started learning more about space, reading astrophotography forums, and joining my local astronomy club. It was during this time that I ended up taking a slightly different path.

I figured that if I could photograph a planet so easily with my point-and-shoot camera and Dobsonian telescope, then why not a galaxy? Before I knew it, deep-sky astrophotography became my primary focus.

Photographing galaxies and nebulae became an obsession, and photographing solar system objects fell way down my priority list.

Back to My Roots

The recent opposition of Jupiter has rekindled my early passion for planetary imaging. Amateur astrophotographers are now taking such incredible images of planets, you almost wouldn’t believe they were captured from Earth.

I’ve been practicing my planetary imaging techniques over the last year, and it was finally time to take my best photo of Jupiter yet.

Photographing Jupiter 

To photograph Jupiter, I used a Celestron Edge HD11 SCT. This is the biggest telescope I own with a focal length of nearly 3000mm, bringing Jupiter up front and center in the eyepiece.

A Schmidt-Cassegrain telescope is a popular type of telescope for planetary imaging in the astrophotography community. The large aperture and sharp optics allow you to really dial in the details of distant solar system objects. 

Celestron Telescope

Celestron EdgeHD 11 Scmidt-Cassegrain telescope.

Instead of a visual eyepiece at the base of the telescope, I attached a ZWO ASI462MC planetary camera. This is a highly sensitive camera that is capable of collecting full-color images of the planet at a high frame rate.

I should be using a UV/IR cut filter with this camera to sharpen the image up. Unfortunately, I do not own a 1.25″ UV/IR cut filter that I can thread onto the barrel of the camera nosepiece. 

Normally, I use a monochrome CMOS camera to capture the planets (such as Saturn and Mars). However, because Jupiter rotates so quickly, I feared I would not collect enough exposures through each RGB filter before the planet had turned significantly.

planetary camera

ZWO ASI462MC Planetary Imaging Camera.

I know that there are Jupiter de-rotation tools (such as WinJupos) to correct this issue, but I have not personally used this software before. I opted to collect an image in full color in a shorter period of time. 

Helpful Resource: WinJupos Jupiter De-Rotation Tutorial (Dylan O’Donnel)

My computerized GoTo equatorial telescope mount (Sky-Watcher EQ8-R Pro) tracks the planet Jupiter so that it remains still during each image exposure. 

I took short video clips of Jupiter through the telescope and hope that I can collect a healthy amount of good frames.

To run the camera and take these short video clips, I use a software called FireCapture which also has some really great tools for framing, focusing, and recording the planet.

The goal was to capture a video of about 60-seconds when the air is still, with as little turbulence as possible.

best planetary imaging software

I use FireCapture planetary imaging software.

My Step-by-Step Process

Although I have been exploring astrophotography for over a decade, the majority of this time was spent in the deep-sky imaging realm. Photographing planets at high magnification is still new to me, and I still have a lot to learn.

However, it may be helpful for you to see the exact process I used to capture and process my latest image of Jupiter. The camera and telescope I use are well-suited for planetary imaging.

Equipment

Many amateur astrophotographers will use a 2X Barlow lens in front of the camera to increase the magnification of the planet. This will indeed make the planet much larger in your image, but will also intensify any atmospheric disturbance. 

I plan to invest in a quality Barlow lens in the near future for planetary imaging. The Tele Vue Optics PowerMate 2x is a popular option to consider.

tele-vue powermate barlow

Telescope Alignment and Focus

I use a Celestron 22mm visual eyepiece to align the telescope mount and center the planet in the telescope. This is also a great chance to actually observe the planet Jupiter and its moons visually in all its glory.

To align the telescope mount and center the target, I use the Sky-Watcher SynScan hand controller (this seems to make people angry).

  • Polar align the telescope mount (QHY PoleMaster)
  • Sky-Watcher 2-Star Alignment Routine
  • Slew to planet Jupiter (it’s either in-view or very close)
  • Center planet in the eyepiece and focus
  • Replace the telescope eyepiece with a dedicated astronomy camera (ZWO ASI462MC)
  • Open FireCapture software, connect the camera
  • In FireCapture, set capture area to widest field of view
  • Locate Jupiter (out of focus)
  • Zoom-in to 125% 
  • Center and focus the planet as best as possible

The Capture Process

  • Set camera gamma to 50%, gain to 60-70%
  • Adjust exposure time based on the histogram (1-2 milliseconds)
  • Set the capture mode to ‘Jupiter’ and ‘.SER’ file type
  • Place Jupiter in the top left-hand side of the preview window
  • Use the ‘ROI’ (region of interest) mode to crop the image to (352 x 400 pixels)
  • Use the ‘Center Object’ tool
  • Run capture by pressing the play button
  • Capture video file of 10,000-15,000 frames

FireCapture planetary software

FireCapture planetary astrophotography software.

As you are collecting videos of the planet, pay attention to focus and changes in seeing and transparency. You may want to pause your session to re-focus the camera at some point, but be careful not to lose the planet’s position during this process. 

Even when capturing a small field of view, the file sizes of the video can really add up (several GB’s each). Make sure you have plenty of extra hard disk space on your computer!

Image Processing

To process my image of Jupiter, I used two different applications; AutoStakkert, and Registax 6. I use AutoStakkert to turn the .SER video file into individual image frames and stack the best ones into a single file.

Because Jupiter rotates so quickly (about 1 minute), I limited my videos to about 60-seconds in total. Other planets, such as Mars and Saturn, do not rotate so quickly and longer video files can be recorded without issue. 

AutoStackkert

  1. Open the video file (.SER)
  2. Analyze the file
  3. Place AP Grid (48 alignment points) 
  4. Choose frame percentage to stack (30%)
  5. Make sure “RGB Align” is checked
  6. Check RGB Align and Drizzle 1.5X
  7. Choose .TIF file type for output
  8. Stack

Registax tutorial

Placing the alignment points on my Jupiter image in AutoStakkert!

There are many settings to play with at this stage but I have found success by stacking the best 30% of frames from a 15,000-frame video file. My video files were usually between 8 – 15k frames in size. 

The image of Jupiter will look quite soft after the stacking process has been completed and this is completely normal. If you would like to learn more about using AutoStakkert! for planetary image stacking, I highly suggest watching this tutorial on YouTube. 

Registax 

Registax has a number of neat tools to get the most out of your planetary images. During this stage, I do my best to recover the surface details of the planet without making the image too noisy. 

Registax

Processing Jupiter using Registax 6.

The wavelet processing tool in Registax 6 is where you finally get to reveal some serious surface details of the planet. I have found that adjusting the first slider to about 80% to right has the biggest impact on the image. 

Feel free to experiment with the wavelet processing sliders to taste, and try to avoid creating an overly ‘crunchy’, noisy image. If your surface detail restoration and sharpening in Registax were too aggressive, you can always make noise reduction adjustments in Adobe Photoshop later on.

Registax before and after

Before and after using the wavelet processing tool in Registax 6.

Helpful Resource: Processing planetary images with Registax

Adobe Photoshop

The final image processing steps are done in Adobe Photoshop. This is where I make some subtle tweaks to the image including boosting the saturation, and some additional noise reduction.

I have found the Adobe Camera Raw Filter to be an effective way to make slight improvements to the image with live feedback. I particularly enjoy the Dehaze and Noise Reduction sliders at this stage.

Camera Raw Filter

Adobe Camera Raw Filter.

Final Thoughts

There are many ways to achieve a successful image of Jupiter using a similar workflow to the one I have shared. Chances are you will develop your own subtle variations to the steps outlined above, and get an even better image of Jupiter than I have.

Once you have experienced the start to finish process of capturing a planet firsthand, you will begin to strategize little ways to improve your final image. For example, I believe that I will be able to produce a much stronger image by using a 2X Barlow lens and a proper UV/IR cut filter in the future.

Set your expectations low for your first night out and make small improvements to your capture and processing routines over time. Like everything in this incredible hobby, great results don’t happen overnight. 

Jupiter astrophotography

Helpful Resources

Related Tags

Photographing the Sunflower Galaxy

|Galaxies|4 Comments

In this post, I will share the techniques and equipment I used to take a picture of the stunning Sunflower Galaxy. With the world largely shut down for me, deep-space astrophotography in the backyard has been a welcome escape. 

Cataloged as Messier 63, this stunning galaxy is about 25 million light-years away from Earth in the constellation Canes Venatici. The months of April and May are the perfect time to photograph M63 from mid-northern latitudes.

You can also watch the video of this process on my YouTube channel:

Photographing the Sunflower Galaxy

The spring season is nicknamed “Galaxy Season” for astrophotographers in the northern hemisphere because there are so many interesting deep-space galaxies up for grabs at this time of year. 

If you’re typically a “nebula guy” like me, photographing galaxies is a nice change of pace, and the approach to the image is quite different than a large nebula.

Galaxies are typically much smaller in apparent size than nebulae, and emit light in the broad spectrum.

Image Scale

The size difference between a large nebula and the Sunflower Galaxy (to scale).

You can’t use narrowband filters to ignore the light pollution from the city the way you can with nebulae, and achieving a natural look to the galaxy and surrounding stars may take some time to get right.

Some people prefer to use a mild light pollution filter when imaging broadband targets with a color camera. I recommend the Optolong L-Pro filter for those looking to capture long exposure images with more contrast from the city. 

After 3 years of use, this filter continues to provide the best results for one-shot-color, broadband astrophotography from my location. Shooting unfiltered is my only other option, and this method can be hit-or-miss depending on the target.

To photograph the Sunflower Galaxy, I used a sensitive monochrome CMOS astronomy camera with LRGB filters. This camera uses a motorized filter wheel that allows me to select the filter I want to use without touching the camera.

Telescope filter wheel

I use a ZWO 7-position (36mm) filter wheel with my dedicated astronomy camera.

Planning the Shoot

All of the photos I capture from the backyard are shot through heavy light pollution (Bortle Scale Class 7), and the seeing conditions are often poor as well. There is no substitute for dark skies, but backyard astrophotography in the city can be done, and the results may surprise you. 

The moon (80% illuminated) was out during this session, which is not ideal for capturing true-color images of galaxies, but I’ll take what I can get. Generally, you’ll want to avoid capturing galaxies when the moon is full, as this light diminishes the contrast in your image and washes out faint details. 

On the night of this imaging session, the forecast was cold and clear, and that’s enough for me to set up my telescope. Spring is a great time for astrophotography because the nights are still long, but the temperatures are a lot more tolerable. 

backyard astrophotography

My humble backyard in the city (and Rudy). 

I am getting better at planning my astrophotography sessions. The ‘old me’ would just see a clear forecast, start setting up, and ‘figure it out’ from there.

But without planning, you will always lose precious clear sky time googling examples of targets to image and potentially selecting something that isn’t a good fit for your skies or your gear.

I use Stellarium for isolating object types, size, and location. I even have a custom landscape (my backyard) loaded in so I can see when certain objects will clear the house or run into the tree.

Stellarium is great for filtering deep-space objects by apparent size, and magnitude, so you can isolate targets that are a perfect fit for your imaging setup. 

Stellarium software

I imported a custom landscape into Stellarium to see where objects will appear in the night sky from my backyard.

Astrospheric is one of the more reliable weather apps out there, and it’s usually the one I can safely plan my imaging sessions around. I actually use a mixture of weather forecasting apps, but I enjoy the level of detail and layering of Astrospheric best. 

I also like to hop on AstroBin to see examples of the exact object I’m about to shoot and filter the images down to ones using the same telescope I have. Not only will you get a better idea of the size and image scale of your target, but a detailed breakdown of the exposure lengths and filters used.

It is a truly remarkable resource. You can register for AstroBin using this link for 20% off a subscription. It is well worth it!

Filter it down even more to a “top pick” version, and get inspired by some of the most amazing amateur astrophotos you’ve ever seen.

Related Article: The 19 Best Astronomy and Stargazing Apps for You Mobile Phone

My Telescope

I’ve been getting a lot of use out of my Celestron Edge HD 11 Schmidt-Cassegrain telescope this galaxy season, and it’s currently the scope with the highest native magnification I own right now.

Normally I love a nice fast apochromatic refractor, but the object is only 10 x 6 arc-minutes in size. I appreciate nearly 2000mm of focal length with this telescope (when the reducer lens is used). 

Celestron Edge HD 11

My Celestron Edge HD 11 telescope.

It’s been nice to use the Edge HD 11 this galaxy season, last year a lot of people were excited about this telescope and I am glad to come through on my promise to get some impressive images with it.

Flat frames have been a little challenging with the scope. There is no getting around not taking flats for a broadband image in this much light pollution.

I’ve had to do lots of tests to get it right, including experimenting with different exposure lengths and using different materials to filter the objective. I do not own a dew shield yet for this telescope yet, which is not ideal

Trevor Jones

I use a 0.7X reducer lens on my SCT for faster more light-gathering power and a practical focal length.

I am using a ZWO ASI2600MM Pro camera to capture the Sunflower Galaxy, which requires a set of LRGB filters to create a full-color image. 

This camera has been an absolute dream thus far, and I know it will be a popular choice for amateur astrophotographers moving forward. 

My Approach

I am trying a new approach to galaxies and LRGB imaging in general. I’ve decided to capture much shorter exposures through each RGB filter than I typically would.

In contrast, I’ll take longer exposures through the luminance filter, in an attempt to collect the important details of the Sunflower galaxy structure. 

I notice that a lot of great astrophotographers will capture galaxies using shorter exposures in RGB, and longer for the luminance (LUM), and that’s exactly the approach I used to photograph the Sunflower Galaxy.

ZWO ASI2600MM Pro camera

The camera is a ZWO ASI2600MM Pro monochrome CMOS camera.

I collected an hour through each color filter and 1.5 hours in luminance data. The RGB exposures were 90-seconds each, and the luminance were 3-minutes each.

The idea was to capture enough quality color data to provide the overall natural color of the object and use the grayscale luminance data for the details.

I run the ZWO ASI2600MM Pro camera at Unity Gain, and Bin the Images 1 x 1. I have been advised to capture my images Binned 2 x 2 with this setup, and drizzle the data (during the integration/calibration stage) to retain the native image resolution.

The idea to capture more data in a shorter amount of time by increasing the pixel size (using software binning). It sounds too good to be true, but I’ll test this method out over the coming weeks and report back. 

my telescope

My telescope pointed towards the Sunflower Galaxy. 

This telescope shoots at F/7, so I’m not sold on going as short as 30-60-seconds. If your telescope is in the F/4 range, a 30-second exposure is likely all you’ll need for RGB.

Image Acquisition and Autoguiding

My little autoguiding system with the ZWO ASI290mm Mini and 72mm refractor has been working fantastic on this rig. Guiding with PHD2 has been extremely accurate, and I simply don’t have to worry about it whatsoever.

The ASI290MM mini is one of the best-selling guide cameras on the market, and it happens to be an incredible planetary camera as well (I used it to photograph Mars and Saturn last summer).

The guide scope has a focal length of 420mm, which I am happy to say has been more than adequate to effectively guide this big SCT.

autoguiding setup

I use a 72 doublet refractor (420mm) mounted to the upper rail of the SCT for autoguiding. 

I have it clipped onto the top rail of the Edge HD 11, and I really like that I can easily shift the system back and forth on top of the OTA to achieve balance.

With the telescope accurately polar aligned (using the QHY PoleMaster) and balanced, a quick star alignment routine was all that was needed for precise pointing accuracy. 

Results

Overall, I am happy with the image of the Sunflower Galaxy I was able to capture. The new (proper) approach to LRGB imaging seems to be paying off, and I will certainly employ this technique again in the future. 

The image is a little soft, in my opinion, but that is largely due to the heavy cropping from the original image frame, as well as my personal processing style for this target.

To create a stronger image, I believe collecting data under a dark, moonless sky is required. Unfortunately, a big galaxy rig like this is tough to travel with. 

sunflower galaxy

The Sunflower Galaxy. 4.5 Hour Exposure. 

Processing the image was time-consuming, but also a lot of fun. I stacked each set of LRGB image exposures separately in DeepSkyStacker, and built the image in Adobe Photoshop using channels. 

I outline this process in a video found in my premium image processing guide. 

Image Processing Guide

The Sunflower Galaxy is a deep-space object that can take your breath away when you see that first exposure appear on the screen.

Whichever galaxies you’ve been photographing this spring, I hope you take a moment to soak in the experience.

In terms of hobbies, astrophotography is like nothing else. I sincerely hope it brings you as much joy as it does to me. Until next time, clear skies!

Helpful Resources:

Related Tags

Selective Processing for More Detail

Staying Inside – Image Processing

The unseasonably cold weather and precipitation we have experienced here in Southern Ontario have given me the perfect opportunity to go through my old astrophotography images and reprocess the data.  I have been advancing my image-processing skills by studying current astronomy images taken by the pros.

Being a creative professional myself, I have always understood and appreciated the power of inspiration. I am always interested in new image-processing techniques, Photoshop tutorials and new software that can enhance my work.  Through selective processing, I have been able to squeeze out the most amount of detail from my astro images.

Western Veil Nebula

The Western Veil Nebula – I reduced the stars to show more contrast in the nebula

My latest take on The Swan Nebula is my favorite version yet. Through selective processing, I was able to tame the background stars, while intensifying the gorgeous pinks and reds in the nebula itself.  

I also recently reprocessed my wide-field image of the Western Veil Nebula, with a focus on reducing star size, and overall image contrast and color. The “witch’s broom nebula” is a tough process, especially if you have to deal with a severe gradient behind all of those stars. After assessing the gradient in Photoshop, (mostly due to heavy light-pollution) I can easily even out the sky background using the Gradient Xterminator plugin.

I am quite pleased at my latest results of the Eagle Nebula as well. I went through my astrophotography folders from the past 4 years (like I said, it’s been cloudy!)  and found a set of almost 2 hours of frames on M16 that I had not previously used!  

I combined all of the data together from May 2012, and May 2013 in DeepSkyStacker to create an image with over 3 hours of exposure time.  I decided to keep the extremely wide-field view captured by my 80mm telescope, rather than cropping the photo around the nebula.

This image really benefited from the selective processing technique. By reducing the stars on a separate layer, I was able to keep all of the detail found in the nebula.

Eagle Nebula - 80mm Telescope

Wide field image of the Eagle Nebula with my 80mm telescope

Image Processing Techniques

One of the processing techniques I have been implementing into my photos is to process different elements of the image separately. By this, I mean to process the background, the stars and the nebulosity on their own.  

I am able to do this by selecting each element of the image and stretching the data without affecting the other areas. For example, I can boost the vibrance and saturation of the nebula or galaxy without adding additional noise to the background of space and stars.

As I have stated many times, I prefer to tame the stars in the image to be as small as possible. Normally, I would run the “make stars smaller” action to the entire image in Photoshop.

This actually starts to diminish the precious detail in your deep-sky object that you worked so hard to capture! Many other actions that are intended to correct issues with the background space and stars can take away from your subject as well.

You can also manually Remove the Stars Completely from your image using photoshop.

Swan Nebula - 8 Inch telescope

My latest version of the Swan Nebula

Selective Processing

There are several ways to accomplish the selective processing technique to your astronomy photos.  You can create multiple adjustment layers of your image in Photoshop, and apply the various actions to each element of the image on a separate layer.

I use the Select and Mask tool to refine my selections before applying effects. This ensures that each new adjustment layer is blended naturally into the final image.

 Once you have applied your desired settings applied to each layer, you can use layer masks to combine all aspects of the photograph into one.  This means you will likely have layers for:

  • The Background Space – With a balanced black-point set

  • The Background Stars – Small, sharp and with lots of accurate colour

  • The Brighter Stars – Soft, or with Diffraction Spikes and Color

  • The Deep-Sky Object – Full of luminance, color and detail

  • The Core or Brightest Area of the DSO – reduced to show detail, not blown out

Selective Processing - Astrophotography

Processing the nebulosity separately from the background stars in Photoshop

You can also process the selected elements of your images as separate documents.  Sometime I prefer to do this to really focus on achieving the best possible result for my focus area, without the temptation to poke around at another feature.  

Once you have processed each version of the image with your focus area maximized, you can then combine the images using layer masks.  The blending and layer masking is definitely the most delicate stage of the process.  You can really make a mess of an image by failing to inspect all areas of your image before flattening.

I find it helpful to use a reference image of your deep-sky target. This is the best way to make sure you have not overstretched your image data, and that your colors and details are an accurate portrayal of that particular deep sky wonder. I often look for inspiration on APOD!  

To stay connected with me and my latest astrophotography images, please follow my Facebook Page.  I hope you are all excited about the wonderful deep-sky targets that will be gracing our night sky the coming months, I sure am!

Resources:

Astrophotography for Beginners – The Basics

How to choose an Astrophotography Camera – My Advice

Top 5 Telescopes for Beginners – My Advice

Related Tags