Skip to Content

bahtinov mask

Better Focus using a Bahtinov Mask

|Equipment|7 Comments

Achieving sharp focus is an essential step of any deep-sky astrophotography session. With so much time and effort put into your polar alignment and autoguiding accuracy, it would be a shame to spoil a photo due to poor focus. Over the years, I’ve had my fair share of deep-sky astrophotography focus mishaps. In many cases, I did not realize how bad the focus of my image was until I attempted to process the final image.

Avoid this unfortunate circumstance by using a simple tool that effectively confirms that your focus is as sharp as can be, every time. No matter which type of camera you use, a Bahtinov mask can help you achieve a higher level of accuracy when focusing your telescope. Unlike autofocus and star measuring software tools, this”old’school” method can be done without the use of an external computer, and takes only a minute.

Achieve Better Astrophotography Focus with a Bahtinov Mask

Astrophotography telescope setup

In general, the smaller the stars are in your image, the better. One of the reasons I love apochromatic refractors such as the William Optics FLT 132, is its ability to capture colorful, pinpoint stars. However, this pleasing characteristic is only present when your focus is spot-on. Refractor telescope owners expect razor-sharp details in their photography, so mastering the art of focusing stars is a must.

Different types of telescopes have better ways of achieving a sharp focus than others. For example, a Newtonian reflector creates its own star diffraction spikes by nature of its design. These patterns can be dissected and tweaked to diagnose issues with collimation and find a sharper focus for astrophotography. In this post, however, I’ll be describing tips that are most useful to those shooting with a refractor telescope, that are using a manual focus routine.

Automatic and motorized focuser users have the ability to use software that tells them when a star is as sharp as possible. (Such as the FWHM measurement in BackyardEOS or APT). But if your shooting with a DSLR camera or dedicated astronomy camera and you just want quickly confirm your focus is on – using a Bahtinov mask is one of the easiest ways to do this. The latest version of this focusing tool is the best I’ve ever used, because the improved design allows more light to pass through the mask. The diffraction spikes Bahtinov mask from William Optics is a patented design – and it works exceptionally well.

Why I use a Bahtinov mask

You can use a Bahtinov mask from the start, or simply pop one on the objective of your telescope to confirm your best focusing efforts were indeed bang-on. I enjoy the simplicity and visual nature of diagnosing and correcting the star diffraction spike pattern. Advanced imagers will often use sophisticated autofocus software to maintain focus throughout the night, even adapting to changing temperatures.

I have installed a Pegasus Astro stepper motor kit on my Explore Scientific ED102 refractor. It now has this ability to focus on its own, although I have not deployed the autofocus features as of yet. The dedicated focuser software reads the star size information and communicates with the motor to make small adjustments to the focuser as needed. A temperature probe reads the ambient temperature outside to decide if a focus tweak is required.

As for the rest of the telescopes I use, the Bahtinov mask makes the focusing routine simple and straightforward.

Focus Basics: Using Live View

If you haven’t heard of focusing using live view, it means you are quite new to DSLR astrophotography, so I’ll briefly explain how it works. Most DSLR cameras (such as the Canon Rebel XS and beyond) have a feature known as “live view”, where a real-time picture is displayed on-screen.

Because it is so dark at night, your live-view screen may appear as pure black when looking through your telescope. This could be because:

  • You do not have your DSLR’s ISO Sensitivity high enough
  • You are so far out of focus that stars are not visible
  • You are not on long exposure “bulb mode”
  • You are not pointed at a bright enough star!

4 tips to ensure that a star appears on your live view screen:

Live View Focus

Aim your telescope at a bright star

First, make your life easier by pointing your telescope at bright star such as Sirius, Betelgeuse, Vega, Deneb etc. These stars are all bright enough to appear on your live-view screen.

Use a high ISO sensitivity

Next, make sure that your camera is set to it’s highest ISO when focusing via live view. On the Canon T3i that I use, that happens to be ISO 6400.

Set camera to Manual Mode – Bulb Shutter speed

Make sure your DSLR camera is set to Bulb mode – the longest possible exposure – past 30”. Slower shutter speeds will dim the star, and we want it as bright as possible for focusing.

Adjust the focus knob on your telescope

And finally, focus your telescopes draw tube until you see a bright star appear on-screen. You may be way out, so make sure that you check end-to-end. (If you still can’t reach focus, you may need to purchase an extender tube)

A dual-speed Crayford style focuser really helps when adjusting focus at this level of accuracy.  If you are looking at purchasing a refractor for astrophotography


What about using a camera lens?

The same settings apply if you are using a camera lens in place of a telescope. The only extra step you will need to take is to make sure that the lens is set to its fastest aperture.

A lens set to an aperture of F/4 or faster will allow plenty of star light to reach the sensor.


Better focus with BackyardEOS

Using Astrophotography Software for Even Better Results

BackyardEOS was built to help astro-imagers improve their acquisition process in the field. There is an excellent function within BackyardEOS that has provided me with a higher level of focus accuracy than ever before: FWHM.

Find BackyardEOS and all of the other software I use for astrophotography on the Resources page.

Using a Bahtinov Mask with BackyardEOS

The star diffraction spike pattern created by the Bahtinov Mask

How to use FWHM (Full Width Half Maximum)

FWHM is a precision focusing aid feature included with BackyardEOS. It is found within the “frame and focus” tab at the top left of the screen. This function associates a value on the star you have selected in a target window. Using the live view mode within BackyardEOS will show you a real-time image of a bright star in your field of view.

Official Description from the creator of BackyardEOS:

“Full Width Half Maximum is the width of a star’s image at half its peak. Focus is achieved when you get the lowest value for the same star over time, indicating a tighter star. BackyardEOS implements FWHM by calculating the standard deviation (the square root of the variance) of all pixel values in a very small selected area.”

Autoguiding Package


Remember to use the same camera settings as discussed earlier while performing this task. Manual Mode, Bulb Shutter Speed, High ISO, and Pre-Focus.

Full width half maximumFirst, make sure the Live view button is pressed in the lower right-hand side of the BackyardEOS interface. If your camera settings are correct, and your focus is close, you should see a number of stars on screen.

I prefer to choose a medium-sized star within the frame as my target star. Double click the target window around your chosen star. This will show a zoomed-in preview window at the top right of the interface.

You will now notice a number below this zoomed star image, and this is the value we will monitor to achieve a high accuracy of focus. The Zoom box center can zoom in on the star if desired, but I prefer to use the default 3X zoom.

Adjust the fine focus knob on your telescope and watch as the number associated with that star changes. The goal is to get the star as small as possible, with the lowest number. There is no set number to reach, as stars vary in size. On a medium sized star, I usually reach a number as low as 3.6, give or take.

Once you have reached the lowest number possible for that star, go ahead and lock your focus into position using the lock screw on your telescope.


Do not use a Bahtinov mask if you are using the FWHM function of BackyardEOS.  The photo above is misleading because you will only be adjusting focus and referring to the FWHM number when the mask is off.  The Zoom box is used for an up close look at the star diffraction pattern only.  A real reading of the star size can only be obtained when the mask is off.  When it comes to focusing with a Bahtinov mask, or the FWHM function, it’s one or the other.

Video: Using a Bahtinov mask to focus my telescope

How to use a Bahtinov Mask

I recently used a Bahtinov mask for the first time with my Explore Scientific ED 102, to see if I could get an even sharper focus on my astrophotography images. The model I used was made by Kendrick Astro Instruments and was built for telescopes 90mm – 105mm.

Update: In February 2018 I had a chance to try out the new Diffraction Spikes Bahtinov mask from William Optics.  The new mask creates a star diffraction pike pattern that is 3 times brighter than a traditional mask (like the one used in this post).  I noticed a huge difference when focusing my DSLR through the FLT 132 refractor.

View the Diffraction Spikes Bahtinov Mask in use to photograph the Rosette Nebula (Video)

How a Bahtinov Mask works

Bahtinov focus maskWhile aiming a bright star, you simply place the Bahtinov focusing mask on your telescopes objective lens and secure it into place using the provided rubber tabs. The openings in the mask create a set of diffraction spikes on the star that will assist in the accuracy of our focus.

The same process as previously described using Live view on your DSLR, or within BackyardEOS is applied when focusing with the mask installed. The difference is, you will no longer use the FWHM value to adjust focus. This time, you will need to pay attention to the star pattern created.

Bahtinov mask for Explore Scientific ED102

Test Exposures vs. Live View

For my small refractor, the live view image was not bright enough to get a useful star diffraction pattern. Instead, I used short preview exposures (the Snap Image button) and made adjustments back and forth.

After about 3 slight focus adjustments, I was able to produce the ideal star diffraction pattern to indicate that my focus was as sharp as possible.

The nice thing about the Bahtinov focus mask is that the star diffraction pattern provides you with a useful visual aid.  Slight changes in focus are evident in the star pattern right away.

Using FWHM with/without the mask

If you watched my video, you’ll know that I am not convinced that a Bahtinov mask is needed to reach perfect focus on a small refractor. Of course, this is assuming you own the BackyardEOS software and use the FWHM method.

Star diffraction patternI believe that larger, faster telescopes such as a Newtonian Reflector would benefit more from a Bahtinov mask. These telescopes collect more light and thus provide a brighter image when using live view. This would allow you to make focusing adjustments to the star diffraction pattern in real time.

In my experience, the FWHM procedure (without a Bahtinov mask) produced results as sharp as with the Bahtinov mask. I may skip the Bahtinov focusing mask in future imaging sessions, and continue to rely on the accurate reading provided using FWHM in BackyardEOS.

Thank you for your continued support! Please follow AstroBackyard on Facebook to stay up to date. You can also join the AstroBackyard mailing list, where I share my latest images and processing techniques.

Below is my current version of the Orion Nebula, with data captured in December 2016, and January 2017.

Orion Nebula by AstroBackyard

The Orion Nebula and Running Man Nebula – Trevor Jones


Related Tags