Skip to Content

refractor telescope

Building a Deep Sky Astrophotography Kit

|Camera|48 Comments

I am often asked for my opinion on the best route to take when it comes to building a deep-sky astrophotography kit for the first time. A popular option for many night sky enthusiasts is to start with a DSLR camera and telescope, and I can understand why. Building an astrophotography setup that revolves around a user-friendly, entry-level DSLR can reap some impressive results.

Modern-day hobbyist/beginner digital SLR cameras such as the Canon EOS Rebel T7i or Nikon D3400 provide the least-steep learning curve when it comes to deep-sky imaging in a very technical and sometimes overwhelming hobby. Even if you decide to upgrade to a dedicated astronomy camera or CCD later, you’ll never regret purchasing a DSLR as they have heaps of potential for all kinds of photography.

building a deep-sky astrophotography kit

Like many of you, I started getting into astrophotography by taking long-exposure images of the night sky using my DSLR camera and lens on a simple tripod. This evolved into capturing multiple hour-long images of deep-sky objects such as the Orion Nebula through a refractor telescope. A camera and (the right) small telescope are capable of capturing some incredible deep-sky objects in our night sky.

It didn’t all come together in one day or even one year. If your fascination with astrophotography is as relentless as mine, deep-sky imaging will be a part of your life forever. I would advise that you map out a clear vision of your personal goals, and patiently work towards them. To me, the most rewarding part of this hobby has been the steady progress I’ve made along the way.

With that out of the way, here is some honest advice from someone who is in it for the long haul. Before we get into it, have a look at the following video where I share an affordable, yet capable setup for deep sky astrophotography with a DSLR camera. 

If you are unclear about what the process of capturing deep-sky astrophotography images with a DSLR camera and telescope involves, have a look at the following video:

Related Video: Astrophotography Cameras: What’s The Best Choice in 2020?

Putting the Pieces Together

In this post, I’ll give you my advice on how to best build yourself a deep-sky astrophotography kit that rewards you with the images you crave. This beginner-level kit will not only produce amazing images of galaxies and nebulae, but deliver a rate of success, and offer a rewarding experience.

This is your chance to learn from my years of mistakes and jump straight into equipment that works. There are plenty of opinions on the best way to go about this, and I’d like to state the fact that I can advise you on what has worked for me.

Early on, it can be confusing to research exactly what you’ll need to successfully photograph a deep-sky object. My goal in this post is to make things as clear as possible and offer a number of different configurations to get you started. The tools you choose are interchangeable with these setups, but I hope that you find it helpful to see an example combination.

Below is an example of an extremely portable and proficient equipment setup that I have used personally to capture deep-sky targets such as the Andromeda Galaxy. It includes a portable star tracker that lets you capture long exposure images of the night sky without star trails. 

portable astrophotography kit

 

  1. William Optics RedCat 51 (or similar)
  2. Sky-Watcher Star Adventurer Mount
  3. Canon EOS Rebel T7i DSLR Camera

The setup pictured above will need a few extras, including a tripod to mount the Sky-Watcher Star Adventurer. The telescope mentioned is a very compact, lightweight apochromatic refractor. I believe that a refractor telescope is the best choice for portable deep-sky astrophotography on a tracking mount like this.

The original Star Adventurer star tracker requires that you manually locate deep-sky objects in the night sky before capturing them. When starting out with a system like this, I recommend sticking to the brightest nebulae and galaxies for a positive experience. Finding dim, small objects becomes trickier when you have to manually locate the object first. 

If you are looking for a “GoTo” solution that will find and track objects (as well as autoguide in both RA and DEC), the newer Star Adventurer GTi is a better option. In late 2021, I put together a helpful post about building a “budget” deep-sky astrophotography kit for under $2000 (USD). If that is the budget you are sticking to, that post is worth a look. 

Other Accessories to Consider:

  • Sturdy Tripod to Mount the Star Tracker
  • Small Guide Scope for Autoguiding
  • Guide Camera for Autoguiding
  • ZWO ASIAIR for Camera Control and Automation

Below, is a recent picture (2022) of a highly portable deep-sky astrophotography setup on a star tracker (Sky-Watcher Star Adventurer GTi) that includes everything from the guide scope to the wifi camera controller (ZWO ASIAIR Plus).

compact telescope

My current highly portable, compact, deep-sky astrophotography rig (2022) 

For more details about the RedCat 51 telescope, check out my William Optics RedCat 51 post. If you are having trouble finding a RedCat 51 in stock, the Radian 61 Triplet APO and William Optics Zenithstar 61II (shown below) are both excellent options. Keep in mind that you may need to purchase a dedicated field flattener (William Optics Flat61A) for a completely flat field of view on your camera sensor. 

small refractor telescope

Here is a photo that was taken using a nearly identical setup to the one listed above under the dark skies of the Black Forest Star Party in 2019. The camera used was a Canon EOS 60Da (which is more sensitive to the h-alpha wavelength), and an Optolong UV/IR cut filter to prevent star bloat.

Andromeda Galaxy amateur photo

Modifying your DSLR camera for astrophotography can help capture the red hues of certain deep-sky objects, but it is not crucial early on. If you plan on shooting your images in the city, you’ll want to take a good look at the many light-pollution filters available to amateur astrophotographers these days. 

A telephoto camera lens is another option to consider, such as the Rokinon 135mm F/2. I have found this lens to be particularly sharp and to produce impressive wide-field astrophotography images. 

Each setup will require different adapters and mounting hardware, so talk to your favorite telescope dealer and ask them what you’ll need in that regard. 

Mounting hardware and extension tubes are some more examples of the specifics you’ll need to confirm before you can get everything up and running. Remember, these are the key components only. Every setup will have its own set of necessary accessories to get to the finish line.

Here is another example of the type of image you could capture using this setup. The following photo was captured using a Canon EOS 60Da camera attached to a William Optics RedCat 51, riding on the Sky-Watcher Star Adventurer (Pro Pack) mount. 

The Orion Nebula

The Orion Nebula captured using a DSLR and compact refractor on the Star Adventurer Pro.

As you can see, you don’t need to have a large aperture refractor telescope or dedicated astronomy camera to take great deep-sky astrophotography images. Not only are portable travel rigs like this quick and easy to set up, but they are capable of producing amazing results. 

The astrophotography setup used for the photo above is small enough to travel with on an airplane in your carry-on bag. As a matter of fact, I brought a similar-sized setup with me to Costa Rica in 2019 to photograph the Carina Nebula!

Sky-Watcher Star Adventurer Pro Review

A highly portable travel astrophotography kit for deep-sky imaging on the go. 

Using a Refractor Telescope with a DSLR Camera

If you already own and enjoy a DSLR or mirrorless camera for daytime photography, chances are you’d like to use it for deep-sky imaging as well. The following principles apply to those shooting with an APS-C sized sensor like the ones found in a Canon Rebel series camera. A full-frame camera sensor will shoot even wider but may expose issues near the edges of your image frame.

Once you learn how to focus your camera through a telescope, a refractor is capable of sharp images with a flat field. Compared to a telephoto camera lens, an apochromatic refractor designed for astrophotography will be easier to focus and mount to your star tracker or equatorial telescope mount.

My personal taste in deep-sky imaging leans heavily toward wide-field targets like The Pleiades, Andromeda Galaxy, and the North America Nebula. For this reason, I tend to recommend a telescope with a wide field of view (usually no more than 700mm). This can make aspects such as autoguiding accuracy and focus, as small movements are less critical at this magnification.

The Pleiades Star Cluster

The Pleiades Star Cluster in Taurus using a compact refractor telescope and a DSLR camera.

For example, the Radian 61 Triplet Astrograph has a focal length of 275mm. At this magnification, an entry-level DSLR camera at prime focus can capture large nebulae such as the Soul Nebula, the California Nebula, and the Rosette Nebula. A DSLR camera can be easily attached to the telescope using the included camera adapter. 

Here is a look at the camera directly attached to the telescope using a t-ring adapter. For this camera (Canon EOS Ra), I also had to use a Canon EF-EOS-R converter for the correct spacing and connection. 

optical tube assembly

Radian 61 APO with a Canon EOS Ra attached.

Many refractor telescopes will have a dedicated field flattener/reducer and adapter to properly expose the image sensor of your camera. A field-flattener evens out the field of view, while a reducer (such as 0.8X) will reduce the focal length and f-ratio of your telescope by that value.

A standard T-Ring adapter screws into the camera body like a camera lens, and can then be fastened to the telescope (prime focus astrophotography). In this configuration, the native focal length of the telescope provides the field of view you can expect to achieve with your camera. 

The Radian 61 Triplet APO is the perfect example of a compact, beginner-friendly refractor telescope, and I am not just saying that because I helped design it! This telescope excels at wide-field nebulae regions, particularly when matched with a modified camera and multi-bandpass narrowband filter. 

The image of the California Nebula below was created using a Radian Triad Ultra filter and a Canon EOS Ra mirrorless camera. The internal filter slot, integrated reducer, and standard camera spacing make connecting your DSLR or mirrorless camera to this telescope a breeze.

California Nebula

The California Nebula captured with an astro-modified DSLR (mirrorless) and the Radian 61.

Choosing a Telescope

I experienced a spike in my deep-sky astrophotography progress after purchasing my first “triplet” apochromatic refractor. A lightweight and compact APO is arguably the best possible choice for a beginner. The doublet and triplet lens designs of these telescopes often use high-end optics to provide the best possible color correction with little to no chromatic aberration.

Refractors are lightweight, portable, and do not require an equatorial mount with a hefty payload capacity to operate. In comparison, a Newtonian reflector will offer much more aperture at a lower price, but will also be much more demanding in terms of maintenance and operation.

My first refractor telescope was an Explore Scientific ED80 Triplet APO. Riding along on a Celestron CG-5 mount, this telescope was responsible for some of my greatest early achievements in astrophotography. This telescope is nearly identical to the Orion ED80T Carbon Fiber APO, an extremely popular refractor telescope in the amateur-astrophotographer market.  

Orion ED80-T

Orion ED80T Barbon Fiber Triplet APO.

Entry-level equatorial telescope mounts such as the Sky-Watcher HEQ5 can effortlessly carry the telescope and all of the photography extras in this range. You cannot beat the portability and ease of use of this design.

Here is a look at my first “successful” imaging rig.  This little 80mm refractor captured many iconic targets from the Eagle Nebula to the North America Nebula. As you can see, the imaging equipment (including the autoguiding combo) is small and lightweight. This allows for better tracking and puts less stress on the mount.

deep sky imaging rig

My first successful deep-sky imaging rig. Sky-Watcher HEQ5, Explore Scientific ED80 telescope.

When keeping the overall weight of your gear to a minimum, a small imaging refractor is the best option. Avoiding a heavy payload is crucial when it comes to deep-sky astrophotography. As a rule of thumb, you should keep the weight of your astrophotography gear to about half of the payload rating of your mount.

Here are some excellent choices to consider when choosing an imaging refractor.

William Optics ZenithStar 61II Doublet

Diameter: 61mm
Focal Length: 360mm
Focal Ratio: f/5.9
Weight: 3.2 lbs
Glass: FPL-53
Field Flattener/Reducer: William Optics FLAT61A

portable telescope for astrophotography

This little apochromatic doublet is one of the smallest telescopes I have ever used for astrophotography (only the RedCat is smaller!), and that’s great news if you own a small tracking mount. The William Optics Z61 weighs just over 3 lbs and is not a problem for portable equatorial mounts such as the iOptron SkyGuider Pro or Sky-Watcher Star Adventurer.

At F/5.9, the 3.2-pound Z61 does an admirable job of collecting light from your deep-sky target.  You can expect to gather some impressive exposures in the 1-2 minute range on the brighter deep-sky objects such as the Andromeda Galaxy like the image below.

This is the first image I took with the Zenithstar 61 and it was a memorable experience. 

Andromeda Galaxy

The Andromeda Galaxy. William Optics Z61 and Canon EOS Rebel T3i. 

Keep in mind that the Flat61 field flattener will be required to produce images with sharp stars to the edge of the frame, especially when using a full-frame DSLR. To add an autoguiding scope, you’ll need to purchase some additional accessories including tube rings and a dovetail plate.

William Optics RedCat 71

  • Focal Length: 350mm
  • Focal Ratio: F/4.9
  • Objective Size: 71mm
  • Glass Type: FPL-53
  • Weight: 6.2 lbs
  • Focuser: Locking Helical
  • Field Flattener/Reducer: Not Needed

If you are looking for a similar experience as the RedCat 51, with a little more aperture, consider the equally impressive William Optics RedCat 71. This is a 4-element astrograph refractor with some added reach to capture a wide variety of deep-sky objects in the night sky. 

I think you will find the 350mm focal length to be a practical choice for all types of deep-sky projects, including the largest galaxies in the night sky. Below, is an example of this telescope ready for a night of action mounted to a Sky-Watcher EQ6-R Pro. I have included links to each piee of this system for your convenience. 

astrophotography telescope

  1. ZWO ASI2400MC Pro
  2. Optolong L-eXtreme Filter
  3. ZWO ASIAIR Plus
  4. ZWO ASI120MM Mini
  5. William Optics Uniguide 50
  6. William Optics RedCat 71
  7. Sky-Watcher EQ6-R Pro

The RedCat 71 is behind some of my favorite astro-image ever taken, and it regularly comes with me on dark sky adventures. Below, you’ll see a recent photo of the Iris Nebula I captured using a one-shot-color dedicated astronomy camera and the William Optics RedCat 71. 

Iris Nebula

The Iris Nebula. William Optics RedCat 71 and ZWO ASI2400MC Pro. 

Orion ED80T Triplet Apo

Diameter: 80mm
Focal Length: 480mm
Focal Ratio: f/6
Weight: 5.5 lbs
Glass: FPL-53
Recommended Field Flattener/Reducer: Orion FF for short refractors

The Orion ED80T CF shares the same focal length, size, and weight of the Explore Scientific ED80, yet uses the highly regarded FPL-53 glass in the objective lens.  This telescope is a popular choice for those looking to invest in premium optics in a small package.

This lightweight carbon fiber refractor is highly portable and can capture crisp, wide-field views of some of the larger targets such as the images Heart Nebula by Chuck Ayoub.

What am I using now? I personally enjoy my Sky-Watcher Esprit 100 ED APO very much. This telescope is compact and portable, yet offers a little more focal length and aperture than the telescopes mentioned above.

Sky-Watcher Esprit 100 ED APO

  • Optical Design: Apochromatic Refractor
  • Glass Type: FPL-53
  • Diameter: 100mm
  • Focal Length: 550mm
  • F/Ratio: f/5.5
  • Tube Weight: 13 lbs

Recommended Field Flattener/Reducer: Sky-Watcher Focal Corrector (Included with telescope)

Sky-Watcher Esprit 100

Since the Esprit 100 arrived in late 2018, I have used this telescope extensively in the backyard. Some of my best astrophotography images to date were captured using this compact apo refractor. 

It may be compact, but the Esprit 100 is very heavy considering its size (nearly 14 pounds to be exact). The 550mm focal length of this refractor has proven to be a useful magnification for many of the astrophotography cameras I use. 

For example, have a look at the following image of the Tadpoles Nebula using the Sky-Watcher Esprit 100 and the ZWO ASI2600MM Pro monochrome astronomy camera:

Tadpoles Nebula

The Tadpoles Nebula. Sky-Watcher Esprit 100 and ZWO ASI2600MM Pro.

This telescope is more expensive than the others mentioned in this post. In my experience, the triplet apochromatic lens construction of the Esprit line of refractors produces flat, well-corrected images. The focuser on this refractor includes an upper linear rail that adds a level of stability when focusing your camera. 

An added bonus of this telescope (which surely adds to the price), is that it includes a number of useful accessories. The Esprit 100 package includes a padded hard carry-case, a dedicated focal corrector (flattener), a finder scope, and an adapter to attach your DSLR camera. 

Why Not Use a Camera Lens?

If you already own a quality telephoto lens in the 200-400mm range, by all means, give that a try first. There are many camera lenses suitable for deep-sky astrophotography, and often offer faster f-ratios than a telescope would. I have personally had success using a Canon EF 300mm F/4L lens for astrophotography. Here is a photo I took of the Orion Nebula with a rather short overall integration time from a Bortle Scale Class 8 backyard.

Orion Nebula 300mm Lens

The only problem with using a telephoto camera lens in place of a telescope is that they are usually more expensive, and can be difficult to focus (especially using a fast aperture setting).

Modern telephoto lenses come with features such as image stabilization and advanced autofocus systems. You are paying for these impressive features, but they do not apply to long-exposure astrophotography.

However, you may already own some lenses for your camera that you use for regular daytime photography, and they can be enjoyed for astro-imaging as well. I have built up quite the collection of Canon lenses over the years, and I enjoy using them when the situation calls for it. 

A word of advice though, wide-angle lenses are much more suitable when photographing the night sky from a dark-sky location. 

camera lenses for astrophotography

Here is a list of the camera lenses I have used for astrophotography, whether it was shooting a deep-sky object, or a wide-angle view of the Milky Way. 

Recommended Astrophotography Mounts

iOptron SkyGuider Pro

The iOptron SkyGuider Pro is a portable EQ mount that offers a reliable solution for astrophotography on the go. The SkyGuider Pro makes shooting long exposure starscapes without star-trailing possible (see my video about star trackers). 

This portable camera mount can be used on a photography tripod and is less obtrusive than a traditional, large equatorial mount. In a sea of competing portable sky tracker mounts, the iOptron SkyGuider Pro stands out as the front-runner in this category.

It is a practical choice if you plan on mounting your camera lenses as well. In this video, I use the SkyGuider with a 300mm camera lens to capture the Orion Nebula from my backyard.

Mount Specs:

Payload: 11 lbs
Mount Weight: 3.2 lbs
Power Requirement: Internal Rechargeable Battery
Built-in Polar Scope: Yes
Autoguider Port: Yes

The iOptron SkyGuider Pro is easy to operate, and I was able to get up and running my first night out. The SGP is a great option if you like to shoot wide-angle nightscapes using a DSLR camera and lens. A portable option like this is great for traveling to a dark sky site.

The image below shows the view of the Milky Way from Cherry Springs State Park during an annual star party. A Canon Rebel T3i with a Rokinon 14mm F/2.8 Lens was mounted to the SkyGuider Pro for this stacked shot.

The Milky Way

The Milky Way using a DSLR and wide-angle lens on the SkyGuider Pro.

The SkyGuider can also be used with a small telescope such as the William Optics Zenithstar 61 pictured below. For this, you’ll attach the included counterweight to the mount to balance the load. With a payload capacity of 11 lbs, this mount had no trouble at all carrying the lightweight Z61 telescope with the camera attached.

The Sky-Watcher Star Adventurer is another star tracker in this category, and it is equally as useful and enjoyable to use. Since receiving a Star Adventurer Pro Pack in the fall of 2019, I have actually found myself reaching for it first when the situation calls for it. Realistically, you can’t go wrong with either of these camera mounts, they are both exceptionally easy to use and reliable.

Sky-Watcher HEQ5

The Sky-Watcher HEQ5 Pro is an entry-level equatorial telescope mount. This “EQ-5” series equatorial mount has been around for many years and has proven itself to be an excellent choice for deep-sky astrophotographers around the world.

Compared to a simple star tracker, this is a serious deep-sky imaging investment that is more than capable of meeting the high demands of years of outdoor use. The Sky-Watcher HEQ5 will perform best when used with an apochromatic refractor with an autoguiding combo.

Among the many benefits of this mount are the ASCOM compatibility (Control via PC), built-in polar axis scope, and GoTo hand controller with over 42K objects in the database. This is equatorial mount is a popular choice for beginners to astrophotography, and for good reason.

  • Maximum Payload Capacity: 30 lbs
  • Telescope Connection: V-Style
  • Power Requirement: 12-Volt DC
  • Built-in Polar Scope: Yes
  • Autoguider Port: Yes

Sky-Watcher EQ6-R Pro

The Sky-Watcher EQ6-R Pro has been a pleasure to use since day. I enjoy the SynScan system and hand controller of this mount and have found the EQ6-R to be incredibly reliable in all weather conditions. 

I have covered this mount extensively in my in-depth review discussing all its features. At the end of the day, this equatorial telescope mount is the perfect balance between portability and function. Despite having larger telescope mounts at my disposal, the EQ6-R gets the most use thanks to its straightforward controls, modest size, and consistent performance.

Zenithstar 73

The Sky-Watcher EQ6-R Pro with a Zenithstar 73 telescope attached. 

Like the Orion Sky-Watcher HEQ5, this telescope mount can be controlled via your computer to locate and lock on to your target. I use the autoguider port with my ZWO ASI290mm Mini guide camera to take long exposure images of up to 10-minutes with sharp, pinpoint stars.

I recommend adding the QHY PoleMaster electronic polar scope to make polar aligning the mount even easier. Polar aligning this mount manually is not a big deal, but the PoleMaster will save you some time on your knees looking through the polar scope. 

  • Payload Capacity: 45 lbs
    Power Requirement: 12-Volt, 4-Amp
  • Telescope Connection: Dual (V-Style and Losmandy)
  • Drive Type: Belt
  • PEC: Yes
  • Built-in Polar Scope: Yes
  • Autoguider Port: Yes

intermediate level astrophotography kit

  1. Sky-Watcher Esprit 100 Super APO
  2. Sky-Watcher EQ6-R Pro Mount
  3. ZWO ASI533MC Pro

I have chosen the items in this kit because they fit the profile of an intermediate-level deep-sky astrophotography rig and the fact that I have used and enjoyed these items personally. 

I tested the ZWO ASI533MC Pro color camera for the first time in November 2019, and it has proven to be a solid replacement for the ZWO ASI294MC Pro (which is no longer available at the time of writing). 

Filters for Astrophotography

If you’re looking to invest in a DSLR or mirrorless camera for astrophotography, you’ll need to consider the adapters and/or flattener/reducers that will sit between the camera body and the telescope. You’ll also need to think about filters that you plan to use, whether it’s a broadband light pollution filter, or narrowband.

The two main filter choices for DSLR and Mirrorless astrophotography shooters are the clip-in versions that are specific to your camera body, and 2″ round mounted versions that thread into the adapter or flattener of your telescope.

clip-in astrophotography filter for DSLR cameras

I prefer the 2″ (48mm) variety as they can also be used with a dedicated astronomy camera in the future. However, clip-on body-mounted filters have the advantage of being compatible with a camera lens attached.

Some of my favorite filters include the Optolong L-eXtreme dual-bandpass filter, and the Astro Hutech IDAS NGS1 broadband light pollution filter. The astrophotography filter you choose will depend on your imaging conditions, and the types of objects you like to photograph.

I suggest reviewing images of objects you plan to shoot on Astrobin, and reviewing which filter was used to produce the result. 

For more information about the filters I use for deep-sky astrophotography from the city, be sure to visit the astrophotography filters section of this website.

Stock vs. a “Modified” Camera

You may want to purchase a camera that has been professionally modified for astrophotography (by removing/replacing the stock IR cut filter) or even invest in an astrophotography camera such as the Canon EOS Ra or the Nikon D810a.

If you are on a tight budget, I recommend having a look at the astronomy classifieds. You may be able to find an affordable used Canon Rebel DSLR or even a used Canon EOS 60Da.canon astrophotography camera

The Canon EOS Ra (2019).

As for dedicated astronomy cameras, they have really become a lot more affordable and available than they were during the early days of CCD astrophotography. A one-shot-color or monochrome CMOS dedicated astronomy camera makes a lot of sense for most amateurs.

Dedicated Astronomy Cameras

Unlike a traditional daytime DSLR or Mirrorless camera, dedicated astronomy cameras have the advantage of a cooled sensor, and are sensitive to the important 656nm wavelength if the visible spectrum.

They lack a display screen for immediate image review or an out-of-the-box way to attach a camera lens. You must use camera control software on your computer or a dedicated device (such as the ASIair) to run an imaging session.

astrophotography camera

Some of the most popular choices in the color camera category (that I have had the pleasure of testing) are the QHY 268C and the ZWO ASI294MC Pro. There are several choices to consider when investing in your first astrophotography camera, but I would like to suggest choosing one that is in use by a large group of people.

This way, you’ll ensure that the camera is well-supported by third-party camera control applications, and there will be plenty of information, troubleshooting tips, and reviews available online.

Recommended Cameras

If you would like to learn about the different types of astrophotography cameras available, and what I recommend for a beginner, please have a look at the following post: Astrophotography Cameras: The Best Choice for a Beginner.

astrophotography cameras

I think to think of the main types of cameras for astrophotography in three categories. Each one specializes in a certain area, although nearly all types of astrophotography can be done by all three.

  1. DSLR/Mirrorless: Best with Lenses, Star Trackers, Nightscapes, Milky Way Photography
  2. Dedicated Astronomy Camera: Best with Telescopes, EQ mounts, Deep-Sky Imaging, Narrowband Imaging
  3. Planetary Cameras: Best with Large Telescopes, Planets, and Solar System Photography

As this article focuses on deep-sky astrophotography, I have not recommended any planetary photography cameras. However, in my brief experiences photographing planets, I enjoy the ZWO ASI290MM Mini as it has a highly-sensitive monochrome CMOS sensor with a high frame rate. 

Canon EOS Rebel T7i

It should come as no surprise that the first camera I recommend for deep-sky astrophotography is the latest Canon Rebel Series DLSR. There are many amazing examples of deep-sky imaging using a Nikon or Sony camera body, but I can only suggest what’s worked exceptionally well for me personally.

The Canon EOS Rebel T7i is the current version of the T3i I currently shoot with. These cameras can be modified for astrophotography by removing the stock IR cut filter to allow the red colors found in many deep-sky objects to reach the sensor. My camera was modified by Astro Mod Canada, but the process can also be done yourself if you are feeling brave.

Canon EOS Rebel T7

The camera can be connected to a telescope by using a T-Ring Adapter. This is what’s known as “prime focus” astrophotography, and the telescope will be used as a camera lens at its fixed focal length. A field flattener/reducer may be recommended for your telescope, which will both create an even field in your images and/or reduces the focal ratio of your telescope.

The Canon EOS Rebel Series DSLR’s are considered “Crop-sensor” cameras, with a smaller sensor than a full-frame camera. If you do opt for a full-frame DSLR, I would recommend the Canon EOS 6D. Alan Dyer presented some interesting results when comparing the original 6D vs. the 6D Mark II model.

ZWO ASI533MC Pro

The ZWO ASI533MC Pro is a one-shot-color dedicated astronomy camera with a 1″ square (11.1mm x 11.1mm) sensor and 3008 x 3008-pixel resolution. Dedicated astronomy cameras like the ASI533MC Pro have a built-in thermoelectric cooler that requires a 12V power source to run. This allows the camera sensor to reach as low as -35 Celsius below the ambient temperature. 

Compared to a DSLR or mirrorless camera, a cooled astronomy camera will record much less noise during a long exposure image. This results in a stronger signal-to-noise ratio, and usually, a better image overall once stacked.

ZWO ASI533MC Pro

 

The ASI533MC Pro must be controlled by using software on your PC such as Astro Photography Tool. Here, you’ll be able to choose a Gain setting, exposure length, and much more. If you are accustomed to using automating your imaging sessions with a DSLR (BackyardEOS), this process will feel quite familiar and comfortable to you. The ZWO ASIAIR also works very well. 

Here is a look at one of the images I managed to capture using the ASI533MC Pro with an Optolong L-eNhance filter from my backyard. I used a Starizona APEX 0.65 reducer to widen the field of view through my Esprit 100 with this camera attached. The final image includes 30 x 5-minutes at Unity Gain.

NGC 7822

NGC 7822. ZWO ASI533MC Pro and Sky-Watcher Esprit 100.

ZWO ASI2600MM Pro

I began using the ZWO ASI2600MM Pro in early 2021 and immediately fell in love with the incredibly high-resolution images (26 MP) I was capturing in monochrome. I find that I get the most use out of this camera when creating narrowband images in Ha, OIII, and SII.

This camera has a large APS-C-sized sensor, which is much larger than most beginner-level astronomy cameras like the ASI533MC Pro.

Order the ZWO ASI2600MM Pro

One of my first projects with the ZWO ASI2600MM Pro was the Seagull Nebula in Canis Major. I created the images by capturing several hours’ worth of exposure time using 3nm narrowband filters (Chroma). The resulting image is one of the best astrophotos I have ever taken.

I have since decided to use this camera in my permanent backyard observatory, as it is the most versatile and practical astrophotography camera I own. To use a monochrome CMOS camera like this effectively, you must invest in a filter wheel to easily swap between color and narrowband filters based on the project. 

Seagull Nebula SHO

The Seagull Nebula (Hubble Palette). ZWO ASI2600MM Pro and Sky-Watcher Esprit 100 APO.

Autoguiding

Autoguiding is a necessary step if you want to expand your imaging capabilities. Having the option to shoot long exposures (3-minutes or more) is something that can have a major impact on your success. A small autoguiding combo will include a guide scope and a camera that doesn’t add too much extra weight to your overall payload.

Adding a small guide scope and camera (of Off-Axis Guiding), also allows you to dither your images. This really helps to create an image with an improved signal-to-noise ratio once stacked. 

I have used a number of guide scopes and guide cameras over the years. The most recent combo is a William Optics GuideStar 61 doublet, and a ZWO ASI290mm mini. The ASI290mm mini is small a monochrome CMOS camera that connects to PHD2 guiding easily and does an excellent job of autoguiding my imaging runs.

Guide Scope for autoguiding

Final Thoughts

It’s hard to advise someone on which astrophotography equipment to buy. I understand that it is an expensive hobby and that it will take time to build a complete setup for deep-sky imaging.

There is plenty of great gear that I have not mentioned in this post. I have only scratched the surface of the potential setups you could put together for successful deep-sky imaging from home.

I hope that this post has given you a number of ideas, and a better idea of what the gear mentioned in this article is capable of. Recommending telescopes, cameras, and lenses for astrophotography seems to draw out a lot of opinions and criticism. In the end, you’ll have to make the final call on which gear is the best fit for your needs.

telescopes for astrophotography

If I could offer up one last piece of advice, it would be to avoid suggestions from those with a lot of technical information, but no actual photos using the gear. I believe astrophotography is about taking pictures!

Is there a particularly amazing piece of gear I should have mentioned in this post? Let me know in the comments.

No matter which setup you decide on, I hope that you keep your initial desire to capture the night sky burning brightly, each step of the way.

Helpful Resources:

deep-sky astrophotography

This article was originally in December 2019 and updated on April 26, 2022.

 

Related Tags