Skip to Content

How a DSLR Ha Filter can Improve your Astrophotos

DSLR camera Ha filter
|H-Alpha|3 Comments

Some of the most incredible DSLR deep-sky images ever produced, likely combined regular RGB data (A typical color image) with images using a Ha filter.  A clip-in filter for your camera such as the Astronomik H-Alpha 12nm CCD filter makes it easy to start gathering Hydrogen-Alpha images with your existing DSLR.

Narrowband filters are an astrophotographers best friend.

 

Canon EOS Ha Filter

The Astronomik H-Alpha 12nm Clip Filter for Canon DSLR’S

This narrowband filter lets the h-alpha light of emission nebulae pass through to the camera sensor, and blocks almost all of the other light spectrum.  What does this mean?

It means that city light pollution and moonlight are completely erased!  This opens up the doors to imaging during the full moon, and from a city backyard.

No more waiting until the new moon phase for deep-sky imaging!

 

Emission Nebulas and Hydrogen-Alpha

Emission nebulas are clouds of glowing gas, and they emit light at a very specific wavelength.  This is information is beneficial to astrophotographers as we are able to isolate this wavelength for photography. The light from an emission nebula is created when the atoms in the gas are ionized by the formation of hot young stars.

The dominant wavelength in a hydrogen nebula is the deep red portion of the spectrum known as the hydrogen-alpha line (656nm to be exact).

 

visible spectrum - wavelengths in nm

The Visible Spectrum – Wavelengths in Nanometers

Why this is important for DSLR astrophotography

By using an Ha filter in your DSLR, it is possible to increase the contrast between objects in the h-alpha emission line and the skyglow background.  The filter completely suppresses the emission lines of artificial lighting such as mercury (Hg) and sodium (Na).  The particulars of the Astronomik ha filter can be understood in the graph below.

 

Ha Filter Wavelengths

Chart showing the the 97% transmission of the h-alpha wavelength

Images captured using a narrowband Ha filter have some pleasing characteristics.

At the top of the list is reduced star size.  This further emphasizes the detail and contrast of a deep-sky image by allowing it to stand out from the surrounding sea of stars.  Filtering out skyglow and light pollution means that longer exposure times of 5 minutes and beyond from the city are possible from the city.  You will likely capture more detail in your subject than ever before. 

Here is an example of what is possible with a Canon 450D and a 12nm Ha filter

 

Canon DSLR with Ha Filter - 12nm Version Example Image

Results from a Canon 450D with a 12nm Ha Filter

Choices – 12nm or 6nm versions

The 6nm version of the Astronomik Ha filter has an extremely narrow emission-line filter.  This version targets an even narrower portion of the visible spectrum, blocking neary the whole remainder of the spectrum.  So wouldn’t the 6nm version the obvious choice?

Despite the increase in contrast and more light-blocking power of the 6nm version, there were a few reasons I went with the 12nm.

 

Ha filer

The filter clips into your DSLR over the sensor

A major step in my pre-imaging routine includes framing my deep-sky target to include as much of the object and surrounding elements as possible.  BackyardEOS streamlines this task with the frame and focus feature.

 


 

With the 12nm Ha filter installed in my DSLR, this becomes a much more difficult process when framing targets without any significantly bright stars in the frame!  The same scenario transpires when focusing the camera.  Not only is focusing stars using live-view out of the question, but test exposures may need to be as long as 10 seconds before anything appears.

 

6nm Ha filter for Canon DSLR

The 6nm Ha filter from Astronomik

 

It’s not the end of the world, but it does take longer to get up and running.  The 6nm would double these impacts, and increase this setup time.

Many backyard astrophotographers would disagree, wishing they had gone with the 6nm instead.  Ideally, having both filters would provide maximum H II contrast while retaining stars in the image.

Does my camera need to be modified for astrophotography?

Absolutely not.  The same benefits of an H-alpha filter can be realized with a stock DSLR.  However, the amount of red light your camera will be able to record will be drastically reduced.  If you are serious about your astrophotography, it is worth thinking about modifying your camera either yourself  or by a professional.  Here is a shot of the Eagle nebula using the Astronomik Ha filter and a stock Canon EOS 7D.

 

Using an H-Alpha filter with a stock DSLR

Example of an Ha filter with a stock DSLR

 

This is typically what a frame looks like taken using a Ha filter through a DSLR.  This emission nebula could have been captured in greater detail using a modified camera, but the skyglow and wavelength suppression capabilities of the filter are still present.

I am a huge promoter of DSLR astro-mods.  If your camera is used for astrophotography exclusively, why not modify your camera yourself?

 

Modified camera for astrophotography

Modifying a Canon DSLR for astrophotography

If you have either a light pollution or h-alpha filter covering your DSLR sensor at all times, you are not required to install any extra replacement filters.  I carefully removed the IR cut filter on my Canon Rebel 450D by watching this video from Gary Honis.  This is known as a full spectrum “naked sensor” mod, and it was the best decision I ever made.

Processing H-Alpha frames taken with a DSLR

What about image processing, is it different than a regular RGB image?  Yes, there are some differences in the stacking and processing procedures, but not many.  It is still important to take as many exposures (light frames) as possible, to increase your signal-to-noise ratio.  Capturing dark frames will also have the same noise-reducing qualities when stacking images using an H-Alpha filter.

This video tutorial should help you understand the process:


 

In a nutshell, the Hydrogen Alpha version of your astrophoto will use the Red channel as a luminance layer that you will then merge with your RGB version.

 

HaRGB in Photoshop – Adding Ha Data to an RGB Image

Hydrogen-alpha images are essentially black and white images.  By combining them will a full-color RGB astrophoto it is possible to create a beautiful composite photo.  Adobe Photoshop is more than capable of accomplishing this task.  I’ll cover this processing method in an upcoming step-by-step tutorial.

Below you will find a simple example of what Ha-RGB processing in Photoshop can accomplish.  For the example below – a very limited amount of interated exposure time was used.  As I collect more data, I will update the graphic with a more finalized result.

The Bubble Nebula in HaRGB

The Bubble Nebula in HaRGB

Here’s the bottom line

If you own a Canon DSLR modified for astrophotography, a clip-in Ha filter should be on your shopping list.  I waited far too long before making this decision.  Combining H-alpha exposures to your existing RGB data can greatly increase the amount of detail and contrast in your astrophotos.  This is especially evident in deep-red emission nebulae.

The clip-in versions offered by Astronomik are rather expensive but are a perfect fit for modified or stock Canon DSLR’s.

The Ha filter factor

The ability to image during the full moon and surrounding week results in much more time under the stars.  No more wasted moonlit clear nights.  If you live in the city, a Ha filter cuts through even the most severe light pollution.  Astrophotography in the backyard becomes possible, and that’s a beautiful thing.

Related Posts

Share This

Related Tags

This Post Has 3 Comments

  1. Darryl Ellis says:

    Hi Trevor,

    Awesome site, outstanding pictures, and I appreciate your openness and willingness to share your hard earned experience. I am a one year old when it comes to AP, and I too image from a Red Zone with an XSI through a refractor.

    I am slowly getting my equipment together and recently upgraded to a decent mount, a CGEM DX, though my camera is yet unmodified and my telescope is a simple C80ed.

    I plan to do the full spectrum mod soon however, but thought that I needed the CLS CCD to block some of the IR necessary to focus with a refractor. I plan to follow your advice also about using the HA filter, but can I use it alone?

    Thanks,

    Darryl

  2. Trevor says:

    Thanks, Darryl! Nice to hear that you are resilient in your efforts against light pollution. I use the IDAS LPS clip-filter by Hutech for LP (it also protects the sensor) for my regular RGB imaging – And then I swap it out for the Astronomik 12nm Ha filter when imaging Hydrogen alpha. I would recommend getting the CLS (clip-in version) filter before doing the full spectrum mod. I’m very happy with the Astronomik filter – well worth the money:) Cheers!

  3. Danny Jones says:

    Hi Trevor,

    I have a 5D MKII, unmodded. So will this filter help with my imaging in the heart of Edmonton? (A complete red zone). So far the images I have been getting are washed out white glowish messes, with a DSO somewhere in the frame. IF I was to add one of these clippable filters, would it help eliminate that whiteish glow? I would love to get the Camera modded, but there is no way I am capable of modding it, I would destroy the camera in about 30 seconds haha. Also, you mention Ontario Telescope sells these filters, but I can not see them on their site. Do you have a link to the purchase page? Thanks, and keep it up, your site has been so helpful. the tutorials are amazing.

    Cheers,

    Danny

    Ps. I am using an 8″ EdgeHD.

Post a Reply

Your email address will not be published. Required fields are marked *