Skip to Content

Astrophotography Cameras

With so many types of astrophotography cameras available, choosing a model to spend your hard earned money on can be a tough decision.

My advice for beginners is to invest in an entry level DSLR camera and kit lens.  This will open the doors to many types of astrophotography including nighttime landscapes, Milky Way portraits, and even deep sky astrophotography through a telescope.

astrophotography cameras

My first astrophotography camera was a Canon Rebel 450D.

Canon, Nikon, and Sony are the leaders of the DSLR camera market.  The brand you choose can have a huge impact on your future equipment options.  For instance, Canon users are much more likely to stay loyal to the brand after purchasing multiple camera lenses made for a Canon DSLR body.

Whichever brand of DSLR you choose in the beginning, you are more likely to stick with until the end, so choose wisely.  My advice here would be to start with an entry level body such as the Canon Rebel T6i or Nikon D3400. Both of these cameras are supported by a wide variety of astrophotography software applications.

These CMOS sensor DSLR’s can usually be found in a bundle that includes a zoom “kit lens” with a focal length of 18-55mm.

The Canon T6i makes an excellent first choice:

Canon DSLR camera for astrophotography

The Canon EOS Rebel T6i / 750D

If you’re like me, you have decided to dive into astrophotography with no previous photography experience.  If you are interested in deep sky astrophotography through a telescope, it is wise to consider having an astrophotography camera that is reserved for this process.

I say this for several reasons, one of which is the act of modifying the camera for astrophotography. When you hear the term “modified”, it means that the stock IR cut filter has been removed to allow the red color from certain nebulae to be recorded.

For more information on choosing a DSLR camera for astrophotography, have a look at this comprehensive breakdown courtesy of the Backyard Astronomer’s Guide (Highly recommended!)

Backyard Astronomer’s Guide: DLSR Cameras for Astrophotography (Updated 2015)

DLSR vs CCD

Using a DSLR Camera

A DSLR camera body can be used for many types of astrophotography.  With a standard kit lens (such as an 18-55mm), Milky Way panoramics and constellation photos are well within reach. Moderns DLSR’s are user-friendly and can help you fast track the basics of night photography.

Canon rebel astrophotography

The Dumbbell Nebula captured using a modified Canon Rebel XSi

This type of camera is very versatile.  You can later swap the camera lens for a telescope for deep sky astrophotography.  For this, you will need a t-ring and adapter to attach the telescope to the camera body.

Types of Astrophotography Available:

  • Milky Way Panoramas
  • Star Trails
  • Constellations
  • Night Landscapes
  • Deep Sky Imaging

Using a CCD Camera

A CCD camera is designed for astronomical imaging, usually through a telescope.  These cameras work differently than a DSLR, as they are designed to maximize collecting light for long periods of time.  A CCD camera has a cooler that can keep the sensor from overheating, resulting in images with very little noise.

SBIG STX-16803 CCD Camera

SBIG STX-16803 CCD Camera

They are also much more sensitive, with a higher level of control.  The Gain setting on a CCD camera can be compared to ISO on a DSLR, with a much more precise level of adjustment.

Types of Astrophotography Available:

  • Deep Sky Imaging
  • Narrowband Deep Sky

Popular CCD camera brands include SBIG, QSI, Atik, and ZWO.  These devices are designed to produce scientific grade deep sky astrophotography images.





 

A good starting point

My first astrophotography camera was a Canon Rebel Xsi (450D).  I learned how to photograph deep-sky objects with this camera and even modified the camera myself by removing the IR cut filter.

The Canon Rebel XSi makes an excellent choice for beginner DSLR astrophotographers.  Also known as the Canon 450D, this camera was the successor to the Canon EOS Xti, and was introduced way back in 2008.  It’s 12.2 megapixel CMOS sensor is small by today’s standards.

For comparison, the latest model in Canon’s line-up in this category (the Canon T6i) is 24.2 MP!  The limited ISO capabilities of the XSi are also worth noting, topping out at a measly ISO 1600.   The biggest downfall of a DSLR this old is the amount of thermal noise produced.  These days, Canon cameras are designed to be much better at handling noise using a high ISO setting.

Canon Rebel Xsi for astrophotography

The Canon Rebel Xsi is still a popular choice for amateur astrophotographers

The Canon 450D – A true value

Despite its age and humble statistics, the Canon 450D can produce stunning results that can compete with images of much more expensive cameras.  For the most part, the noise can be taken care of by shooting dark frames, and noise reduction in post-processing.

I have seen used DSLR bodies for the Canon Rebel Xsi sell for as low as $150 on astronomy classified sites like Astro Buy Sell.  Just because a DSLR is newer with more features, doesn’t necessarily mean it does a better job of reducing noise in long exposure astro-imaging.  Gary Honis did some testing of a number of Canon Rebel DSLR’s to test the noise characteritics of each model:

Comparing noise in 6 different Canon DSLR models:

Canon Digital Rebel T3i (600D) – Review & Comparison Testing For Astro Imaging

Which DSLR is best for astrophotography?

Brands such as Canon and Nikon have dominated the market for DSLR astronomy photographers in the past, but now camera manufacturers like Sony have also entered the picture with its mirrorless design.  The prices and features of these cameras vary as much as the deep-sky nebulas and galaxies you will image with them.

I have my preferences towards the Canon line of DSLR cameras, but I have done my best to cover the basics of all astrophotography cameras below.

Astrophotography Cameras

DSLR Cameras for Astrophotography – Canon 6D, Nikon D810A, Sony A7

DSLR Camera Filters

DSLR cameras are great at accepting filters to use during your imaging sessions through your telescope.  For example, I use an Astronomik 12nm Ha Filter in my Canon T3i to capture narrowband h-alpha photos.  The 12nm h-alpha filters block out all wavelengths of light (including light pollution and moonlight) except for a very narrow band of data in the hydrogen alpha spectrum.

 

Astronomik 12nm Ha Filter

Installing the Astronomik 12nm Ha Filter in my Canon T3i

 

Speaking of light pollution, astrophotographers in the city can benefit from LP (Light pollution) filters for their DSLR camera.  The filter I currently use for all RGB (color) imaging is an IDAS LPS (light pollution suppression) filter made by Hutech.  This clip-in filter does a great job at blocking stray light from street lamps, exterior lighting, and car headlights.

Video: Installing astrophotography filters on your DSLR

A Cooled CMOS Astrophotography Camera

The ZWO ASI071MC-Cool uses the same sensor found in the popular Nikon D7000 (Sony IMX071).  I have tested this camera on several occasions, capturing deep-sky targets such as the Leo Triplet, and Markarian’s Chain of galaxies.

This One shot color camera uses a modified DSLR sensor that can be cooled to -40 degrees below ambient temperature. Other camera manufacturers such as Atik, have introduced CMOS sensor cameras as well.

A CMOS camera uses a different sensor technology than a camera with a CCD sensor does.

The ASI071 makes for a good entry point into the world of CCD astrophotography, as the color sensor produces regular color (RGB) images just like a DSLR.  However, a big advantage a camera like this has over a DSLR is the extremely low-noise qualities of the images produced.  Have a look at my images of M81 and M82 taken with this camera in March 2017.

M81 M82 using the ASI071MC-Cool (Color)

ASI071MC-Cool Astrophotography Camera

The ZWO ASI071MC-Cool

I learned a lot ab0ut CCD imaging with this camera.  It introduced me to the world of .FIT files, Sequence Generator Pro, and an entirely new stacking procedure.

One of the early lessons I learned the hard way, was selecting the correct Bayer pattern for the camera.  RAW files from a DSLR camera are debayered automatically in software like DeepSkyStacker and Adobe Photoshop.

DeepSkyStacker can debayer the .FIT files produced with the ASI071 as well, but you have to tell the application exactly how to debayer it.  My biggest breakthrough was discovering that the Bayer pattern for this camera is RGGB, and to make the necessary setting adjustments in DSS based on that profile.

I useful thread on Cloudy Nights about the ASI071MC-Cool.

Types of Astrophotography Cameras

There are a few options available when thinking about taking pictures of the night sky.  The main type of camera I focus on my astrophotography is a DSLR (Digital Single Lens Reflex) camera.  Other options include CCD (Dedicated, Cooled Astronomical Cameras), Point and Shoot Digital Cameras and Webcams.  Each type of camera has it’s strengths and weaknesses, whether it’s performance, cost, or ease of use.  The reason I currently prefer using a DSLR camera for my astronomy imaging is the convenience, flexibility, and cost.  I may advance into a dedicated astronomical CCD Camera in the future, but for now, I am still getting the results I want with my Canon 450D.

 

Camera Settings for Astrophotography

Adjusting camera settings for astrophotography on a Canon 1000D

Choosing the Right Camera for the job

The type of camera you will use depends on what you intend to photograph.  Because I mainly shoot deep-sky astronomical objects, a DSLR that I could attach to my telescope via a t-adapter was the logical choice.  The DSLR also allows you to attach several different types of lenses to it for landscape astrophotography projects.

If you prefer to focus on taking pictures of the planets in our solar system, a webcam may be a better fit for your needs. If you are not interested in all of the technical settings and advanced controls included in a DSLR camera, a Point and Shoot model may be all you need for your landscape astrophotography goals.

If you are a serious amateur astronomer who wants to take your deep-sky astrophotography to the next level, the CCD camera is likely in your future.

Deep-Sky Astrophotography

This is the act of photographing deep-sky objects in space such as galaxies, nebulae and globular clusters.  These objects are usually cataloged as Messier Objects, NGC (New General Catalogue) or IC (Index Catalogues).  This is the realm where I spend the majority of my time.

DSLR Cameras and CCD Cameras are the 2 main options available for this type of astrophotography.  A third option has surfaced over the past few years, and that is a CMOS sensor dedicated astronomy camera such as the Altair Hypercam 183C.

A tracking telescope mount is required to compensate for the rotation of the Earth, and the apparent movement of the night sky.  Without an Equatorial Mount, you will experience star trailing in exposures longer than 15-10 seconds. An example deep-sky astrophotography is this image of the California Nebula.

Horsehead Nebula HaRGB

Deep-sky astrophotography with a Canon Rebel T3i

Landscape Astrophotography

Landscape astrophotography has gained popularity over the years with the increasingly affordable DSLR’s available.  These cameras are much more sensitive to light than ever before, and nobody can resist the allure of an image of the Milky Way.  This type of photography can also include shots of constellations, planet conjunctions, the moon and more.

This type of photography has quickly become a close second behind my interest in deep-sky imaging.  Attaching a camera lens to your DSLR is necessary for a wide field view of space, rather than connecting the camera to a telescope.

For shots like the one above, I use a wide angle camera lens on a stationary tripod.  The stars will begin to trail in exposures longer than 30 seconds, but this is not an issue when capturing a photo similar to this.

Milky Way Landscape

I used a Canon EF 17-40mm F/4L lens on a tripod to capture the photo above.

Solar System Imaging – Planetary Astrophotography

I began my photographic journey with this type of imaging.  My first shots were of the Moon through my Orion 4.5 Reflector Telescope.  I would use my Point and Shoot Canon Powershot hand-held through the eyepiece for pictures of the Moon, Jupiter, Saturn, Mars, and Venus.

Orion starshoot Solar System Imaging Camera

The Orion Starshoot Solar System Imaging Camera is a popular choice for beginners due to its affordable price tag and availability. This little wonder features a 1280 x 1024 pixel CMOS imaging chip – designed for capturing Solar System objects such as Jupiter, Saturn, and Mars.

For the best results, astrophotographers will take short videos of the planet they want to capture, and stack the best frames together using Registax or a similar software. The reason for this method is to compensate for varying levels of transparency in the Earth’s atmosphere.  Some of the best planetary images in the world were taken using these inexpensive “webcam” style cameras.

Discussion: Capabilities and examples using the Orion Starshoot Solar System Imaging Camera (Cloudy Nights)

Here is my photo of Jupiter – taken using a Canon PowerShot camera:

The Planet Jupiter captured through the telescope eyepiece

The Planet Jupiter – Photo through a Telescope Eyepiece

Narrowband Deep-Sky Astrophotography

This is where it gets interesting.  Narrowband imaging is used by professional astrophotographers around the world, including on the photos that were taken by the Hubble Space Telescope.  The concept behind this type of photography is to shoot your deep-sky object through different filters that only pick up certain wavelengths of light.

This is beneficial for several reasons, among them is being able to capture images under heavy light pollution.  This is usually done with a cooled CCD camera with an attached filter wheel.

Example astronomical photo with a DSLR camera

Messier 27 – The Dumbbell Nebula with a Canon DSLR

There will always be a learning curve to overcome when starting out with a new camera.  I encourage you to join your local astronomy club or one of the many astrophotography communities on the web for specific advice about the camera you are using.

Choosing the right camera

No matter which type of astrophotography camera you use, the important thing is that it produces the results you are aiming for. Personally, I thought I would always shoot with a DSLR camera.  That all changed when I experienced the power of a cooled sensor, and the high-quality, low-noise images it produced.

For my deep sky imaging, a dedicated one shot color astronomy camera such as the Altair Hypercam 183C will likely become my primary imaging instrument for the time being.  Your camera should compliment your style and imaging conditions.  For me, it’s all about maximizing the short windows of imaging time I can squeeze in.

Please subscribe to the AstroBackyard Newsletter for my latest equipment reviews and astrophotography tutorials.